Perovskite materials, characterized by the general formula ABX₃, exhibit significant lattice distortion effects that can profoundly influence their physical properties. These distortions arise from the differences in ionic radii between the A and B cations, leading to a deformation of the cubic structure into lower symmetry phases, such as orthorhombic or tetragonal forms. Such distortions can affect various properties, including ferroelectricity, superconductivity, and ionic conductivity. For instance, in some perovskites, the degree of distortion is correlated with their ability to undergo phase transitions at certain temperatures, which is crucial for applications in solar cells and catalysts. The effects of lattice distortion can be quantitatively described using the distortion parameters, which often involve calculations of the bond lengths and angles, impacting the electronic band structure and overall material stability.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.