StudentsEducators

Persistent Segment Tree

A Persistent Segment Tree is a data structure that allows for efficient querying and updating of segments within an array while preserving the history of changes. Unlike a traditional segment tree, which only maintains a single state, a persistent segment tree enables you to retain previous versions of the tree after updates. This is achieved by creating new nodes for modified segments while keeping unmodified nodes shared between versions, leading to a space-efficient structure.

The main operations include:

  • Querying: You can retrieve the sum or minimum value over a range in O(log⁡n)O(\log n)O(logn) time.
  • Updating: Each update operation takes O(log⁡n)O(\log n)O(logn) time, but instead of altering the original tree, it generates a new version of the tree that reflects the change.

This data structure is especially useful in scenarios where you need to maintain a history of changes, such as in version control systems or in applications where rollback functionality is required.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Non-Coding Rna Functions

Non-coding RNAs (ncRNAs) are a diverse class of RNA molecules that do not encode proteins but play crucial roles in various biological processes. They are involved in gene regulation, influencing the expression of coding genes through mechanisms such as transcriptional silencing and epigenetic modification. Examples of ncRNAs include microRNAs (miRNAs), which can bind to messenger RNAs (mRNAs) to inhibit their translation, and long non-coding RNAs (lncRNAs), which can interact with chromatin and transcription factors to regulate gene activity. Additionally, ncRNAs are implicated in critical cellular processes such as RNA splicing, genome organization, and cell differentiation. Their functions are essential for maintaining cellular homeostasis and responding to environmental changes, highlighting their importance in both normal development and disease states.

Nyquist Frequency Aliasing

Nyquist Frequency Aliasing occurs when a signal is sampled below its Nyquist rate, which is defined as twice the highest frequency present in the signal. When this happens, higher frequency components of the signal can be indistinguishable from lower frequency components during the sampling process, leading to a phenomenon known as aliasing. For instance, if a signal contains frequencies above half the sampling rate, these frequencies are reflected back into the lower frequency range, causing distortion and loss of information.

To prevent aliasing, it is crucial to sample a signal at a rate greater than twice its maximum frequency, as stated by the Nyquist theorem. The mathematical representation for the Nyquist rate can be expressed as:

fs>2fmaxf_s > 2 f_{max}fs​>2fmax​

where fsf_sfs​ is the sampling frequency and fmaxf_{max}fmax​ is the maximum frequency of the signal. Understanding and applying the Nyquist criterion is essential in fields like digital signal processing, telecommunications, and audio engineering to ensure accurate representation of the original signal.

Bayesian Nash

The Bayesian Nash equilibrium is a concept in game theory that extends the traditional Nash equilibrium to settings where players have incomplete information about the other players' types (e.g., their preferences or available strategies). In a Bayesian game, each player has a belief about the types of the other players, typically represented by a probability distribution. A strategy profile is considered a Bayesian Nash equilibrium if no player can gain by unilaterally changing their strategy, given their beliefs about the other players' types and their strategies.

Mathematically, a strategy sis_isi​ for player iii is part of a Bayesian Nash equilibrium if for all types tit_iti​ of player iii:

ui(si,s−i,ti)≥ui(si′,s−i,ti)∀si′∈Siu_i(s_i, s_{-i}, t_i) \geq u_i(s_i', s_{-i}, t_i) \quad \forall s_i' \in S_iui​(si​,s−i​,ti​)≥ui​(si′​,s−i​,ti​)∀si′​∈Si​

where uiu_iui​ is the utility function for player iii, s−is_{-i}s−i​ represents the strategies of all other players, and SiS_iSi​ is the strategy set for player iii. This equilibrium concept is crucial in situations such as auctions or negotiations, where players must make decisions based on their beliefs about others, rather than complete knowledge.

Bragg Grating Reflectivity

Bragg Grating Reflectivity refers to the ability of a Bragg grating to reflect specific wavelengths of light based on its periodic structure. A Bragg grating is formed by periodically varying the refractive index of a medium, such as optical fibers or semiconductor waveguides. The condition for constructive interference, which results in maximum reflectivity, is given by the Bragg condition:

λB=2nΛ\lambda_B = 2n\LambdaλB​=2nΛ

where λB\lambda_BλB​ is the wavelength of light, nnn is the effective refractive index of the medium, and Λ\LambdaΛ is the grating period. When light at this wavelength encounters the grating, it is reflected back, while other wavelengths are transmitted or diffracted. The reflectivity of the grating can be enhanced by increasing the modulation depth of the refractive index change or optimizing the grating length, making Bragg gratings essential in applications such as optical filters, sensors, and lasers.

Cayley Graph In Group Theory

A Cayley graph is a visual representation of a group that illustrates its structure and the relationships between its elements. Given a group GGG and a set of generators S⊆GS \subseteq GS⊆G, the Cayley graph is constructed by taking the elements of GGG as vertices. An edge is drawn between two vertices ggg and g′g'g′ if there exists a generator s∈Ss \in Ss∈S such that g′=gsg' = gsg′=gs.

This graph is directed if the generators are not symmetric, meaning that ggg to g′g'g′ is not the same as g′g'g′ to ggg. The Cayley graph provides insights into the group’s properties, such as connectivity and symmetry, and is particularly useful for studying finite groups, as it can reveal the underlying structure and help identify isomorphisms between groups. In essence, Cayley graphs serve as a bridge between algebraic and geometric perspectives in group theory.

Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the fundamental theory describing the strong interaction, one of the four fundamental forces in nature, which governs the behavior of quarks and gluons. In QCD, quarks carry a property known as color charge, which comes in three types: red, green, and blue. Gluons, the force carriers of the strong force, mediate interactions between quarks, similar to how photons mediate electromagnetic interactions. One of the key features of QCD is asymptotic freedom, which implies that quarks behave almost as free particles at extremely short distances, while they are confined within protons and neutrons at larger distances due to the increasing strength of the strong force. Mathematically, the interactions in QCD are described by the non-Abelian gauge theory, characterized by the group SU(3)SU(3)SU(3), which captures the complex relationships between color charges. Understanding QCD is essential for explaining a wide range of phenomena in particle physics, including the structure of hadrons and the behavior of matter under extreme conditions.