StudentsEducators

Planck’s Law

Planck's Law describes the electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature. It establishes that the intensity of radiation emitted at a specific wavelength is determined by the temperature of the body, following the formula:

I(λ,T)=2hc2λ5⋅1ehcλkT−1I(\lambda, T) = \frac{2hc^2}{\lambda^5} \cdot \frac{1}{e^{\frac{hc}{\lambda kT}} - 1}I(λ,T)=λ52hc2​⋅eλkThc​−11​

where:

  • I(λ,T)I(\lambda, T)I(λ,T) is the spectral radiance,
  • hhh is Planck's constant,
  • ccc is the speed of light,
  • λ\lambdaλ is the wavelength,
  • kkk is the Boltzmann constant,
  • TTT is the absolute temperature in Kelvin.

This law is pivotal in quantum mechanics as it introduced the concept of quantized energy levels, leading to the development of quantum theory. Additionally, it explains phenomena such as why hotter objects emit more radiation at shorter wavelengths, contributing to our understanding of thermal radiation and the distribution of energy across different wavelengths.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

5G Network Optimization

5G Network Optimization refers to the processes and techniques employed to enhance the performance, efficiency, and capacity of 5G networks. This involves a variety of strategies, including dynamic resource allocation, network slicing, and advanced antenna technologies. By utilizing algorithms and machine learning, network operators can analyze traffic patterns and user behavior to make real-time adjustments that maximize network performance. Key components include optimizing latency, throughput, and energy efficiency, which are crucial for supporting the diverse applications of 5G, from IoT devices to high-definition video streaming. Additionally, the deployment of multi-access edge computing (MEC) can reduce latency by processing data closer to the end-users, further enhancing the overall network experience.

Floyd-Warshall Shortest Path

The Floyd-Warshall algorithm is a dynamic programming method used to find the shortest paths between all pairs of vertices in a weighted graph. This algorithm is particularly effective for dense graphs and can handle both positive and negative weights, although it does not work with graphs containing negative weight cycles. The algorithm operates by iteratively updating the distance matrix, where the distance between any two vertices iii and jjj is compared to the distance through an intermediate vertex kkk. The fundamental update rule can be expressed as:

dij=min⁡(dij,dik+dkj)d_{ij} = \min(d_{ij}, d_{ik} + d_{kj})dij​=min(dij​,dik​+dkj​)

where dijd_{ij}dij​ is the current shortest distance from vertex iii to vertex jjj. The time complexity of the Floyd-Warshall algorithm is O(V3)O(V^3)O(V3), making it less efficient for very large graphs, but its ability to compute all-pairs shortest paths is invaluable in various applications, such as network routing and urban transportation modeling.

Eigenvectors

Eigenvectors are fundamental concepts in linear algebra that relate to linear transformations represented by matrices. An eigenvector of a square matrix AAA is a non-zero vector vvv that, when multiplied by AAA, results in a scalar multiple of itself, expressed mathematically as Av=λvA v = \lambda vAv=λv, where λ\lambdaλ is known as the eigenvalue corresponding to the eigenvector vvv. This relationship indicates that the direction of the eigenvector remains unchanged under the transformation represented by the matrix, although its magnitude may be scaled by the eigenvalue. Eigenvectors are crucial in various applications such as principal component analysis in statistics, vibration analysis in engineering, and quantum mechanics in physics. To find the eigenvectors, one typically solves the characteristic equation given by det(A−λI)=0\text{det}(A - \lambda I) = 0det(A−λI)=0, where III is the identity matrix.

Thermoelectric Generator Efficiency

Thermoelectric generators (TEGs) convert heat energy directly into electrical energy using the Seebeck effect. The efficiency of a TEG is primarily determined by the materials used, characterized by their dimensionless figure of merit ZTZTZT, where ZT=S2σTκZT = \frac{S^2 \sigma T}{\kappa}ZT=κS2σT​. In this equation, SSS represents the Seebeck coefficient, σ\sigmaσ is the electrical conductivity, TTT is the absolute temperature, and κ\kappaκ is the thermal conductivity. The maximum theoretical efficiency of a TEG can be approximated using the Carnot efficiency formula:

ηmax=1−TcTh\eta_{max} = 1 - \frac{T_c}{T_h}ηmax​=1−Th​Tc​​

where TcT_cTc​ is the cold side temperature and ThT_hTh​ is the hot side temperature. However, practical efficiencies are usually much lower, often ranging from 5% to 10%, due to factors such as thermal losses and material limitations. Improving TEG efficiency involves optimizing material properties and minimizing thermal resistance, which can lead to better performance in applications such as waste heat recovery and power generation in remote locations.

Optimal Control Riccati Equation

The Optimal Control Riccati Equation is a fundamental component in the field of optimal control theory, particularly in the context of linear quadratic regulator (LQR) problems. It is a second-order differential or algebraic equation that arises when trying to minimize a quadratic cost function, typically expressed as:

J=∫0∞(x(t)TQx(t)+u(t)TRu(t))dtJ = \int_0^\infty \left( x(t)^T Q x(t) + u(t)^T R u(t) \right) dtJ=∫0∞​(x(t)TQx(t)+u(t)TRu(t))dt

where x(t)x(t)x(t) is the state vector, u(t)u(t)u(t) is the control input vector, and QQQ and RRR are symmetric positive semi-definite matrices that weight the state and control input, respectively. The Riccati equation itself can be formulated as:

ATP+PA−PBR−1BTP+Q=0A^T P + PA - PBR^{-1}B^T P + Q = 0ATP+PA−PBR−1BTP+Q=0

Here, AAA and BBB are the system matrices that define the dynamics of the state and control input, and PPP is the solution matrix that helps define the optimal feedback control law u(t)=−R−1BTPx(t)u(t) = -R^{-1}B^T P x(t)u(t)=−R−1BTPx(t). The solution PPP must be positive semi-definite, ensuring that the cost function is minimized. This equation is crucial for determining the optimal state feedback policy in linear systems, making it a cornerstone of modern control theory

Transfer Function

A transfer function is a mathematical representation that describes the relationship between the input and output of a linear time-invariant (LTI) system in the frequency domain. It is commonly denoted as H(s)H(s)H(s), where sss is a complex frequency variable. The transfer function is defined as the ratio of the Laplace transform of the output Y(s)Y(s)Y(s) to the Laplace transform of the input X(s)X(s)X(s):

H(s)=Y(s)X(s)H(s) = \frac{Y(s)}{X(s)}H(s)=X(s)Y(s)​

This function helps in analyzing the system's stability, frequency response, and time response. The poles and zeros of the transfer function provide critical insights into the system's behavior, such as resonance and damping characteristics. By using transfer functions, engineers can design and optimize control systems effectively, ensuring desired performance criteria are met.