StudentsEducators

Price Floor

A price floor is a government-imposed minimum price that must be charged for a good or service. This intervention is typically established to ensure that prices do not fall below a level that would threaten the financial viability of producers. For example, a common application of a price floor is in the agricultural sector, where prices for certain crops are set to protect farmers' incomes. When a price floor is implemented, it can lead to a surplus of goods, as the quantity supplied exceeds the quantity demanded at that price level. Mathematically, if PfP_fPf​ is the price floor and QdQ_dQd​ and QsQ_sQs​ are the quantities demanded and supplied respectively, a surplus occurs when Qs>QdQ_s > Q_dQs​>Qd​ at PfP_fPf​. Thus, while price floors can protect certain industries, they may also result in inefficiencies in the market.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Fama-French Three-Factor Model

The Fama-French Three-Factor Model is an asset pricing model that expands upon the traditional Capital Asset Pricing Model (CAPM) by including two additional factors to better explain stock returns. The model posits that the expected return of a stock can be determined by three factors:

  1. Market Risk: The excess return of the market over the risk-free rate, which captures the sensitivity of the stock to overall market movements.
  2. Size Effect (SMB): The Small Minus Big factor, representing the additional returns that small-cap stocks tend to provide over large-cap stocks.
  3. Value Effect (HML): The High Minus Low factor, which reflects the tendency of value stocks (high book-to-market ratio) to outperform growth stocks (low book-to-market ratio).

Mathematically, the model can be expressed as:

Ri=Rf+βi(Rm−Rf)+si⋅SMB+hi⋅HML+ϵiR_i = R_f + \beta_i (R_m - R_f) + s_i \cdot SMB + h_i \cdot HML + \epsilon_iRi​=Rf​+βi​(Rm​−Rf​)+si​⋅SMB+hi​⋅HML+ϵi​

Where RiR_iRi​ is the expected return of the asset, RfR_fRf​ is the risk-free rate, RmR_mRm​ is the expected market return, βi\beta_iβi​ is the sensitivity to market risk, sis_isi​ is the sensitivity to the size factor, hih_ihi​ is the sensitivity to the value factor, and

Endogenous Money Theory Post-Keynesian

Endogenous Money Theory (EMT) within the Post-Keynesian framework posits that the supply of money is determined by the demand for loans rather than being fixed by the central bank. This theory challenges the traditional view of money supply as exogenous, emphasizing that banks create money through lending when they extend credit to borrowers. As firms and households seek financing for investment and consumption, banks respond by generating deposits, effectively increasing the money supply.

In this context, the relationship can be summarized as follows:

  • Demand for loans drives money creation: When businesses want to invest, they approach banks for loans, prompting banks to create money.
  • Interest rates are influenced by the supply and demand for credit, rather than being solely controlled by central bank policies.
  • The role of the central bank is to ensure liquidity in the system and manage interest rates, but it does not directly control the total amount of money in circulation.

This understanding of money emphasizes the dynamic interplay between financial institutions and the economy, showcasing how monetary phenomena are deeply rooted in real economic activities.

Neutrino Oscillation Experiments

Neutrino oscillation experiments are designed to study the phenomenon where neutrinos change their flavor as they travel through space. This behavior arises from the fact that neutrinos are produced in specific flavors (electron, muon, or tau) but can transform into one another due to quantum mechanical effects. The theoretical foundation for this oscillation is rooted in the mixing of different neutrino mass states, which can be described mathematically by the mixing angles and mass-squared differences.

The key equation governing these oscillations is given by:

P(να→νβ)=sin⁡2(Δm312L4E)P(\nu_\alpha \to \nu_\beta) = \sin^2\left(\frac{\Delta m^2_{31} L}{4E}\right) P(να​→νβ​)=sin2(4EΔm312​L​)

where P(να→νβ)P(\nu_\alpha \to \nu_\beta)P(να​→νβ​) is the probability of a neutrino of flavor α\alphaα oscillating into flavor β\betaβ, Δm312\Delta m^2_{31}Δm312​ is the difference in the squares of the masses of the neutrino states, LLL is the distance traveled, and EEE is the neutrino energy. These experiments have significant implications for our understanding of particle physics and the Standard Model, as they provide evidence for the existence of neutrino mass, which was previously believed to be zero.

Minimax Search Algorithm

The Minimax Search Algorithm is a decision-making algorithm used primarily in two-player games, such as chess or tic-tac-toe. Its purpose is to minimize the possible loss for a worst-case scenario while maximizing the potential gain. The algorithm works by constructing a game tree where each node represents a game state, and it alternates between minimizing and maximizing layers, depending on whose turn it is.

In essence, the player (maximizer) aims to choose the move that provides the maximum possible score, while the opponent (minimizer) aims to select moves that minimize the player's score. The algorithm evaluates the game states at the leaf nodes of the tree and propagates these values upward, ultimately leading to the decision that results in the optimal strategy for the player. The Minimax algorithm can be implemented recursively and often incorporates techniques such as alpha-beta pruning to enhance efficiency by eliminating branches that do not need to be evaluated.

Chaitin’S Incompleteness Theorem

Chaitin’s Incompleteness Theorem is a profound result in algorithmic information theory, asserting that there are true mathematical statements that cannot be proven within a formal axiomatic system. Specifically, it introduces the concept of algorithmic randomness, stating that the complexity of certain mathematical truths exceeds the capabilities of formal proofs. Chaitin defined a real number Ω\OmegaΩ, representing the halting probability of a universal algorithm, which encapsulates the likelihood that a randomly chosen program will halt. This number is both computably enumerable and non-computable, meaning while we can approximate it, we cannot determine its exact value or prove its properties within a formal system. Ultimately, Chaitin’s work illustrates the inherent limitations of formal mathematical systems, echoing Gödel’s incompleteness theorems but from a perspective rooted in computation and information theory.

Rational Expectations Hypothesis

The Rational Expectations Hypothesis (REH) posits that individuals form their expectations about the future based on all available information, including past experiences and current economic indicators. This theory suggests that people do not make systematic errors when predicting future events; instead, their forecasts are, on average, correct. Consequently, any surprises in economic policy or conditions will only have temporary effects on the economy, as agents quickly adjust their expectations.

In mathematical terms, if EtE_tEt​ represents the expectation at time ttt, the hypothesis can be expressed as:

Et[xt+1]=xt+1 (on average)E_t[x_{t+1}] = x_{t+1} \text{ (on average)}Et​[xt+1​]=xt+1​ (on average)

This implies that the expected value of the future variable xxx is equal to its actual value in the long run. The REH has significant implications for economic models, particularly in the fields of macroeconomics and finance, as it challenges the effectiveness of systematic monetary and fiscal policy interventions.