The Quantum Hall effect is a quantum phenomenon observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields. In this regime, the Hall conductivity becomes quantized, leading to the formation of discrete energy levels known as Landau levels. As a result, the relationship between the applied voltage and the transverse current is characterized by plateaus in the Hall resistance, which can be expressed as:
where is Planck's constant, is the elementary charge, and is an integer representing the filling factor. This quantization is not only significant for fundamental physics but also has practical applications in metrology, providing a precise standard for resistance. The Quantum Hall effect has led to important insights into topological phases of matter and has implications for future quantum computing technologies.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.