A Quantum Spin Liquid State is a unique phase of matter characterized by highly entangled quantum states of spins that do not settle into a conventional ordered phase, even at absolute zero temperature. In this state, the spins remain in a fluid-like state, exhibiting frustration, which prevents them from aligning in a simple manner. This results in a ground state that is both disordered and highly correlated, leading to exotic properties such as fractionalized excitations. Notably, these materials can support topological order, allowing for non-local entanglement and potential applications in quantum computing. The study of quantum spin liquids is crucial for understanding complex quantum systems and may lead to the discovery of new physical phenomena.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.