The Reynolds-Averaged Navier-Stokes (RANS) equations are a set of fundamental equations used in fluid dynamics to describe the motion of fluid substances. They are derived from the Navier-Stokes equations, which govern the flow of incompressible and viscous fluids. The key idea behind RANS is the time-averaging of the Navier-Stokes equations over a specific time period, which helps to separate the mean flow from the turbulent fluctuations. This results in a system of equations that accounts for the effects of turbulence through additional terms known as Reynolds stresses. The RANS equations are widely used in engineering applications such as aerodynamic design and environmental modeling, as they simplify the complex nature of turbulent flows while still providing valuable insights into the overall fluid behavior.
Mathematically, the RANS equations can be expressed as:
where $ \overline{u_i}
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.