Strongly Correlated Electron Systems (SCES) refer to materials in which the interactions between electrons are so strong that they cannot be treated as independent particles. In these systems, the electron-electron interactions significantly influence the physical properties, leading to phenomena such as high-temperature superconductivity, magnetism, and metal-insulator transitions. Unlike conventional materials, where band theory may suffice, SCES often require more sophisticated theoretical approaches, such as dynamical mean-field theory (DMFT) or quantum Monte Carlo simulations. The interplay of spin, charge, and orbital degrees of freedom in these systems gives rise to rich and complex phase diagrams, making them a fascinating area of study in condensed matter physics. Understanding SCES is crucial for developing new materials and technologies, including advanced electronic and spintronic devices.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.