StudentsEducators

Strouhal Number

The Strouhal Number (St) is a dimensionless quantity used in fluid dynamics to characterize oscillating flow mechanisms. It is defined as the ratio of the inertial forces to the gravitational forces, and it can be mathematically expressed as:

St=fLU\text{St} = \frac{fL}{U}St=UfL​

where:

  • fff is the frequency of oscillation,
  • LLL is a characteristic length (such as the diameter of a cylinder), and
  • UUU is the velocity of the fluid.

The Strouhal number provides insights into the behavior of vortices and is particularly useful in analyzing the flow around bluff bodies, such as cylinders and spheres. A common application of the Strouhal number is in the study of vortex shedding, where it helps predict the frequency at which vortices are shed from an object in a fluid flow. Understanding St is crucial in various engineering applications, including the design of bridges, buildings, and vehicles, to mitigate issues related to oscillations and resonance.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Euler’S Summation Formula

Euler's Summation Formula provides a powerful technique for approximating the sum of a function's values at integer points by relating it to an integral. Specifically, if f(x)f(x)f(x) is a sufficiently smooth function, the formula is expressed as:

∑n=abf(n)≈∫abf(x) dx+f(b)+f(a)2+R\sum_{n=a}^{b} f(n) \approx \int_{a}^{b} f(x) \, dx + \frac{f(b) + f(a)}{2} + Rn=a∑b​f(n)≈∫ab​f(x)dx+2f(b)+f(a)​+R

where RRR is a remainder term that can often be expressed in terms of higher derivatives of fff. This formula illustrates the idea that discrete sums can be approximated using continuous integration, making it particularly useful in analysis and number theory. The accuracy of this approximation improves as the interval [a,b][a, b][a,b] becomes larger, provided that f(x)f(x)f(x) is smooth over that interval. Euler's Summation Formula is an essential tool in asymptotic analysis, allowing mathematicians and scientists to derive estimates for sums that would otherwise be difficult to calculate directly.

Coulomb Blockade

The Coulomb Blockade is a quantum phenomenon that occurs in small conductive islands, such as quantum dots, when they are coupled to leads. In these systems, the addition of a single electron is energetically unfavorable due to the electrostatic repulsion between electrons, which leads to a situation where a certain amount of energy, known as the charging energy, must be supplied to add an electron. This charging energy is defined as:

EC=e22CE_C = \frac{e^2}{2C}EC​=2Ce2​

where eee is the elementary charge and CCC is the capacitance of the island. As a result, the flow of current through the device is suppressed at low temperatures and low voltages, leading to a blockade of charge transport. At higher temperatures or voltages, the thermal energy can overcome this blockade, allowing electrons to tunnel into and out of the island. This phenomenon has significant implications in the fields of mesoscopic physics, nanoelectronics, and quantum computing, where it can be exploited for applications like single-electron transistors.

Cerebral Blood Flow Imaging

Cerebral Blood Flow Imaging (CBF Imaging) is a neuroimaging technique that visualizes and quantifies blood flow in the brain. This method is crucial for understanding various neurological conditions, such as stroke, dementia, and brain tumors. CBF imaging can be performed using several modalities, including Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Magnetic Resonance Imaging (MRI).

By measuring the distribution and velocity of blood flow, clinicians can assess brain function, identify areas of reduced perfusion, and evaluate the effectiveness of therapeutic interventions. The underlying principle of CBF imaging is based on the fact that increased neuronal activity requires enhanced blood supply to meet metabolic demands, which can be quantified using mathematical models, such as the Fick principle. This allows researchers and healthcare providers to correlate blood flow data with clinical outcomes and patient symptoms.

Computational General Equilibrium Models

Computational General Equilibrium (CGE) Models are sophisticated economic models that simulate how an economy functions by analyzing the interactions between various sectors, agents, and markets. These models are based on the concept of general equilibrium, which means they consider how changes in one part of the economy can affect other parts, leading to a new equilibrium state. They typically incorporate a wide range of economic agents, including consumers, firms, and the government, and can capture complex relationships such as production, consumption, and trade.

CGE models use a system of equations to represent the behavior of these agents and the constraints they face. For example, the supply and demand for goods can be expressed mathematically as:

Qd=QsQ_d = Q_sQd​=Qs​

where QdQ_dQd​ is the quantity demanded and QsQ_sQs​ is the quantity supplied. By solving these equations simultaneously, CGE models provide insights into the effects of policy changes, technological advancements, or external shocks on the economy. They are widely used in economic policy analysis, environmental assessments, and trade negotiations due to their ability to illustrate the broader economic implications of specific actions.

Loanable Funds

The concept of Loanable Funds refers to the market where savers supply funds for loans to borrowers. This framework is essential for understanding how interest rates are determined within an economy. In this market, the quantity of funds available for lending is influenced by various factors such as savings rates, government policies, and overall economic conditions. The interest rate acts as a price for borrowing funds, balancing the supply of savings with the demand for loans.

In mathematical terms, we can express the relationship between the supply and demand for loanable funds as follows:

S=DS = DS=D

where SSS represents the supply of savings and DDD denotes the demand for loans. Changes in economic conditions, such as increased consumer confidence or fiscal stimulus, can shift these curves, leading to fluctuations in interest rates and the overall availability of credit. Understanding this framework is crucial for policymakers and economists in managing economic growth and stability.

Dc-Dc Buck-Boost Conversion

Dc-Dc Buck-Boost Conversion is a type of power conversion that allows a circuit to either step down (buck) or step up (boost) the input voltage to a desired output voltage level. This versatility is crucial in applications where the input voltage may vary above or below the required output voltage, such as in battery-powered devices. The buck-boost converter uses an inductor, a switch (usually a transistor), a diode, and a capacitor to regulate the output voltage.

The operation of a buck-boost converter can be described mathematically by the following relationship:

Vout=Vin⋅D1−DV_{out} = V_{in} \cdot \frac{D}{1-D}Vout​=Vin​⋅1−DD​

where VoutV_{out}Vout​ is the output voltage, VinV_{in}Vin​ is the input voltage, and DDD is the duty cycle of the switch, ranging from 0 to 1. This flexibility in voltage regulation makes buck-boost converters ideal for various applications, including renewable energy systems, electric vehicles, and portable electronics.