StudentsEducators

Suffix Array

A suffix array is a data structure that provides a sorted array of all suffixes of a given string. For a string SSS of length nnn, the suffix array is an array of integers that represent the starting indices of the suffixes of SSS in lexicographical order. For example, if S="banana"S = \text{"banana"}S="banana", the suffixes are: "banana", "anana", "nana", "ana", "na", and "a". The suffix array for this string would be the indices that sort these suffixes: [5, 3, 1, 0, 4, 2].

Suffix arrays are particularly useful in various applications such as pattern matching, data compression, and bioinformatics. They can be built efficiently in O(nlog⁡n)O(n \log n)O(nlogn) time using algorithms like the Karkkainen-Sanders algorithm or prefix doubling. Additionally, suffix arrays can be augmented with auxiliary structures, like the Longest Common Prefix (LCP) array, to further enhance their functionality for specific tasks.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Riemann Mapping

The Riemann Mapping Theorem is a fundamental result in complex analysis that asserts the existence of a conformal (angle-preserving) mapping between simply connected open subsets of the complex plane. Specifically, if DDD is a simply connected domain in C\mathbb{C}C that is not the entire plane, then there exists a biholomorphic (one-to-one and onto) mapping f:D→Df: D \to \mathbb{D}f:D→D, where D\mathbb{D}D is the open unit disk. This mapping allows us to study properties of complex functions in a more manageable setting, as the unit disk is a well-understood domain. The significance of the theorem lies in its implications for uniformization, enabling mathematicians to classify complicated surfaces and study their properties via simpler geometrical shapes. Importantly, the Riemann Mapping Theorem also highlights the deep relationship between geometry and complex analysis.

Slutsky Equation

The Slutsky Equation describes how the demand for a good changes in response to a change in its price, taking into account both the substitution effect and the income effect. It can be mathematically expressed as:

∂xi∂pj=∂hi∂pj−xj∂xi∂I\frac{\partial x_i}{\partial p_j} = \frac{\partial h_i}{\partial p_j} - x_j \frac{\partial x_i}{\partial I}∂pj​∂xi​​=∂pj​∂hi​​−xj​∂I∂xi​​

where xix_ixi​ is the quantity demanded of good iii, pjp_jpj​ is the price of good jjj, hih_ihi​ is the Hicksian demand (compensated demand), and III is income. The equation breaks down the total effect of a price change into two components:

  1. Substitution Effect: The change in quantity demanded due solely to the change in relative prices, holding utility constant.
  2. Income Effect: The change in quantity demanded resulting from the change in purchasing power due to the price change.

This concept is crucial in consumer theory as it helps to analyze consumer behavior and the overall market demand under varying conditions.

Edgeworth Box

The Edgeworth Box is a fundamental concept in microeconomic theory, particularly in the study of general equilibrium and welfare economics. It visually represents the distribution of resources and preferences between two consumers, typically labeled as Consumer A and Consumer B, within a defined set of goods. The dimensions of the box correspond to the total amounts of two goods, XXX and YYY. The box allows economists to illustrate Pareto efficiency, where no individual can be made better off without making another worse off, through the use of indifference curves for each consumer.

The corner points of the box represent the extreme allocations where one consumer receives all of one good and none of the other. The contract curve within the box shows all the Pareto-efficient allocations, indicating the combinations of goods that can be traded between the consumers to reach a mutually beneficial outcome. Overall, the Edgeworth Box serves as a powerful tool to analyze and visualize the effects of trade and resource allocation in an economy.

Green Finance Carbon Pricing Mechanisms

Green Finance Carbon Pricing Mechanisms are financial strategies designed to reduce carbon emissions by assigning a cost to the carbon dioxide (CO2) emitted into the atmosphere. These mechanisms can take various forms, including carbon taxes and cap-and-trade systems. A carbon tax imposes a direct fee on the carbon content of fossil fuels, encouraging businesses and consumers to reduce their carbon footprint. In contrast, cap-and-trade systems cap the total level of greenhouse gas emissions and allow industries with low emissions to sell their extra allowances to larger emitters, thus creating a financial incentive to lower emissions.

By integrating these mechanisms into financial systems, governments and organizations can drive investment towards sustainable projects and technologies, ultimately fostering a transition to a low-carbon economy. The effectiveness of these approaches is often measured through the reduction of greenhouse gas emissions, which can be expressed mathematically as:

Emissions Reduction=Initial Emissions−Post-Implementation Emissions\text{Emissions Reduction} = \text{Initial Emissions} - \text{Post-Implementation Emissions}Emissions Reduction=Initial Emissions−Post-Implementation Emissions

This highlights the significance of carbon pricing in achieving international climate goals and promoting environmental sustainability.

Chebyshev Nodes

Chebyshev Nodes are a specific set of points that are used particularly in polynomial interpolation to minimize the error associated with approximating a function. They are defined as the roots of the Chebyshev polynomials of the first kind, which are given by the formula:

Tn(x)=cos⁡(n⋅arccos⁡(x))T_n(x) = \cos(n \cdot \arccos(x))Tn​(x)=cos(n⋅arccos(x))

for xxx in the interval [−1,1][-1, 1][−1,1]. The Chebyshev Nodes are calculated using the formula:

xk=cos⁡(2k−12n⋅π)for k=1,2,…,nx_k = \cos\left(\frac{2k - 1}{2n} \cdot \pi\right) \quad \text{for } k = 1, 2, \ldots, nxk​=cos(2n2k−1​⋅π)for k=1,2,…,n

These nodes have several important properties, including the fact that they are distributed more closely at the edges of the interval than in the center, which helps to reduce the phenomenon known as Runge's phenomenon. By using Chebyshev Nodes, one can achieve better convergence rates in polynomial interpolation and minimize oscillations, making them particularly useful in numerical analysis and computational mathematics.

Weierstrass Function

The Weierstrass function is a classic example of a continuous function that is nowhere differentiable. It is defined as a series of sine functions, typically expressed in the form:

W(x)=∑n=0∞ancos⁡(bnπx)W(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x)W(x)=n=0∑∞​ancos(bnπx)

where 0<a<10 < a < 10<a<1 and bbb is a positive odd integer, satisfying ab>1+3π2ab > 1+\frac{3\pi}{2}ab>1+23π​. The function is continuous everywhere due to the uniform convergence of the series, but its derivative does not exist at any point, showcasing the concept of fractal-like behavior in mathematics. This makes the Weierstrass function a pivotal example in the study of real analysis, particularly in understanding the intricacies of continuity and differentiability. Its pathological nature has profound implications in various fields, including mathematical analysis, chaos theory, and the understanding of fractals.