StudentsEducators

Thermoelectric Generator Efficiency

Thermoelectric generators (TEGs) convert heat energy directly into electrical energy using the Seebeck effect. The efficiency of a TEG is primarily determined by the materials used, characterized by their dimensionless figure of merit ZTZTZT, where ZT=S2σTκZT = \frac{S^2 \sigma T}{\kappa}ZT=κS2σT​. In this equation, SSS represents the Seebeck coefficient, σ\sigmaσ is the electrical conductivity, TTT is the absolute temperature, and κ\kappaκ is the thermal conductivity. The maximum theoretical efficiency of a TEG can be approximated using the Carnot efficiency formula:

ηmax=1−TcTh\eta_{max} = 1 - \frac{T_c}{T_h}ηmax​=1−Th​Tc​​

where TcT_cTc​ is the cold side temperature and ThT_hTh​ is the hot side temperature. However, practical efficiencies are usually much lower, often ranging from 5% to 10%, due to factors such as thermal losses and material limitations. Improving TEG efficiency involves optimizing material properties and minimizing thermal resistance, which can lead to better performance in applications such as waste heat recovery and power generation in remote locations.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Euler-Lagrange

The Euler-Lagrange equation is a fundamental equation in the calculus of variations that provides a method for finding the path or function that minimizes or maximizes a certain quantity, often referred to as the action. This equation is derived from the principle of least action, which states that the path taken by a system is the one for which the action integral is stationary. Mathematically, if we consider a functional J[y]J[y]J[y] defined as:

J[y]=∫abL(x,y,y′) dxJ[y] = \int_{a}^{b} L(x, y, y') \, dxJ[y]=∫ab​L(x,y,y′)dx

where LLL is the Lagrangian of the system, yyy is the function to be determined, and y′y'y′ is its derivative, the Euler-Lagrange equation is given by:

∂L∂y−ddx(∂L∂y′)=0\frac{\partial L}{\partial y} - \frac{d}{dx} \left( \frac{\partial L}{\partial y'} \right) = 0∂y∂L​−dxd​(∂y′∂L​)=0

This equation must hold for all functions y(x)y(x)y(x) that satisfy the boundary conditions. The Euler-Lagrange equation is widely used in various fields such as physics, engineering, and economics to solve problems involving dynamics, optimization, and control.

Aho-Corasick Automaton

The Aho-Corasick Automaton is an efficient algorithm used for searching multiple patterns simultaneously within a text. It constructs a finite state machine (FSM) from a set of keywords, allowing for rapid pattern matching. The process involves two main phases: building the automaton and searching through the text.

  1. Building the Automaton: This phase involves creating a trie from the input keywords and then augmenting it with failure links that provide fallback states when a character match fails. This structure allows the automaton to continue searching without restarting from the beginning of the text.

  2. Searching: During the search phase, the text is processed character by character. The automaton efficiently transitions between states based on the current character and the established failure links, allowing it to report all occurrences of the keywords in linear time relative to the length of the text plus the number of matches found.

Overall, the Aho-Corasick algorithm is particularly useful in applications like text processing, intrusion detection systems, and DNA sequencing, where multiple patterns need to be identified quickly and accurately.

Samuelson Condition

The Samuelson Condition refers to a criterion in public economics that determines the efficient provision of public goods. It states that a public good should be provided up to the point where the sum of the marginal rates of substitution of all individuals equals the marginal cost of providing that good. Mathematically, this can be expressed as:

∑i=1n∂Ui∂G=MC\sum_{i=1}^{n} \frac{\partial U_i}{\partial G} = MCi=1∑n​∂G∂Ui​​=MC

where UiU_iUi​ is the utility of individual iii, GGG is the quantity of the public good, and MCMCMC is the marginal cost of providing the good. This means that the total benefit derived from the last unit of the public good should equal its cost, ensuring that resources are allocated efficiently. The condition highlights the importance of collective willingness to pay for public goods, as the sum of individual benefits must reflect the societal value of the good.

Metabolic Pathway Engineering

Metabolic Pathway Engineering is a biotechnological approach aimed at modifying the metabolic pathways of organisms to optimize the production of desired compounds. This technique involves the manipulation of genes and enzymes within a metabolic network to enhance the yield of metabolites, such as biofuels, pharmaceuticals, and industrial chemicals. By employing tools like synthetic biology, researchers can design and construct new pathways or modify existing ones to achieve specific biochemical outcomes.

Key strategies often include:

  • Gene overexpression: Increasing the expression of genes that encode for enzymes of interest.
  • Gene knockouts: Disrupting genes that lead to the production of unwanted byproducts.
  • Pathway construction: Integrating novel pathways from other organisms to introduce new functionalities.

Through these techniques, metabolic pathway engineering not only improves efficiency but also contributes to sustainability by enabling the use of renewable resources.

Laplace Equation

The Laplace Equation is a second-order partial differential equation that plays a crucial role in various fields such as physics, engineering, and mathematics. It is defined as:

∇2ϕ=0\nabla^2 \phi = 0∇2ϕ=0

where ∇2\nabla^2∇2 is the Laplacian operator, and ϕ\phiϕ is a scalar function. The equation characterizes situations where a function is harmonic, meaning it satisfies the property that the average value of the function over any sphere is equal to its value at the center. Applications of the Laplace Equation include electrostatics, fluid dynamics, and heat conduction, where it models potential fields or steady-state solutions. Solutions to the Laplace Equation exhibit important properties, such as uniqueness and stability, making it a fundamental equation in mathematical physics.

Ternary Search

Ternary Search is an efficient algorithm used for finding the maximum or minimum of a unimodal function, which is a function that increases and then decreases (or vice versa). Unlike binary search, which divides the search space into two halves, ternary search divides it into three parts. Given a unimodal function f(x)f(x)f(x), the algorithm consists of evaluating the function at two points, m1m_1m1​ and m2m_2m2​, which are calculated as follows:

m1=l+(r−l)3m_1 = l + \frac{(r - l)}{3}m1​=l+3(r−l)​ m2=r−(r−l)3m_2 = r - \frac{(r - l)}{3}m2​=r−3(r−l)​

where lll and rrr are the current bounds of the search space. Depending on the values of f(m1)f(m_1)f(m1​) and f(m2)f(m_2)f(m2​), the algorithm discards one of the three segments, thereby narrowing down the search space. This process is repeated until the search space is sufficiently small, allowing for an efficient convergence to the optimum point. The time complexity of ternary search is generally O(log⁡3n)O(\log_3 n)O(log3​n), making it a useful alternative to binary search in specific scenarios involving unimodal functions.