StudentsEducators

Thermoelectric Materials

Thermoelectric materials are substances that can directly convert temperature differences into electrical voltage and vice versa, leveraging the principles of thermoelectric effects such as the Seebeck effect and Peltier effect. These materials are characterized by their ability to exhibit a high thermoelectric efficiency, often quantified by a dimensionless figure of merit ZTZTZT, where ZT=S2σTκZT = \frac{S^2 \sigma T}{\kappa}ZT=κS2σT​. Here, SSS is the Seebeck coefficient, σ\sigmaσ is the electrical conductivity, TTT is the absolute temperature, and κ\kappaκ is the thermal conductivity. Applications of thermoelectric materials include power generation from waste heat and temperature control in electronic devices. The development of new thermoelectric materials, especially those that are cost-effective and environmentally friendly, is an active area of research, aiming to improve energy efficiency in various industries.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Jensen’S Alpha

Jensen’s Alpha is a performance metric used to evaluate the excess return of an investment portfolio compared to the expected return predicted by the Capital Asset Pricing Model (CAPM). It is calculated using the formula:

α=Rp−(Rf+β(Rm−Rf))\alpha = R_p - \left( R_f + \beta (R_m - R_f) \right)α=Rp​−(Rf​+β(Rm​−Rf​))

where:

  • α\alphaα is Jensen's Alpha,
  • RpR_pRp​ is the actual return of the portfolio,
  • RfR_fRf​ is the risk-free rate,
  • β\betaβ is the portfolio's beta (a measure of its volatility relative to the market),
  • RmR_mRm​ is the expected return of the market.

A positive Jensen’s Alpha indicates that the portfolio has outperformed its expected return, suggesting that the manager has added value beyond what would be expected based on the portfolio's risk. Conversely, a negative alpha implies underperformance. Thus, Jensen’s Alpha is a crucial tool for investors seeking to assess the skill of portfolio managers and the effectiveness of investment strategies.

Markov Random Fields

Markov Random Fields (MRFs) are a class of probabilistic graphical models used to represent the joint distribution of a set of random variables having a Markov property described by an undirected graph. In an MRF, each node represents a random variable, and edges between nodes indicate direct dependencies. This structure implies that the state of a node is conditionally independent of the states of all other nodes given its neighbors. Formally, this can be expressed as:

P(Xi∣XN(i))=P(Xi∣Xj for j∈N(i))P(X_i | X_{N(i)}) = P(X_i | X_j \text{ for } j \in N(i))P(Xi​∣XN(i)​)=P(Xi​∣Xj​ for j∈N(i))

where N(i)N(i)N(i) denotes the neighbors of node iii. MRFs are particularly useful in fields like computer vision, image processing, and spatial statistics, where local interactions and dependencies between variables are crucial for modeling complex systems. They allow for efficient inference and learning through algorithms such as Gibbs sampling and belief propagation.

Harberger’S Triangle

Harberger's Triangle is a conceptual tool used in public finance and economics to illustrate the efficiency costs of taxation. It visually represents the trade-offs between equity and efficiency when a government imposes taxes. The triangle is formed on a graph where the base represents the level of economic activity and the height signifies the deadweight loss created by taxation.

This deadweight loss occurs because taxes distort market behavior, leading to a reduction in the quantity of goods and services traded. The area of the triangle can be calculated as 12×base×height\frac{1}{2} \times \text{base} \times \text{height}21​×base×height, demonstrating how the inefficiencies grow as tax rates increase. Understanding Harberger's Triangle helps policymakers evaluate the impacts of tax policies on economic efficiency and inform decisions that balance revenue generation with minimal market distortion.

Digital Signal

A digital signal is a representation of data that uses discrete values to convey information, primarily in the form of binary code (0s and 1s). Unlike analog signals, which vary continuously and can take on any value within a given range, digital signals are characterized by their quantized nature, meaning they only exist at specific intervals or levels. This allows for greater accuracy and fidelity in transmission and processing, as digital signals are less susceptible to noise and distortion.

In digital communication systems, information is often encoded using techniques such as Pulse Code Modulation (PCM) or Delta Modulation (DM), enabling efficient storage and transmission. The mathematical representation of a digital signal can be expressed as a sequence of values, typically denoted as x[n]x[n]x[n], where nnn represents the discrete time index. The conversion from an analog signal to a digital signal involves sampling and quantization, ensuring that the information retains its integrity while being transformed into a suitable format for processing by digital devices.

Quantum Spin Liquid State

A Quantum Spin Liquid State is a unique phase of matter characterized by highly entangled quantum states of spins that do not settle into a conventional ordered phase, even at absolute zero temperature. In this state, the spins remain in a fluid-like state, exhibiting frustration, which prevents them from aligning in a simple manner. This results in a ground state that is both disordered and highly correlated, leading to exotic properties such as fractionalized excitations. Notably, these materials can support topological order, allowing for non-local entanglement and potential applications in quantum computing. The study of quantum spin liquids is crucial for understanding complex quantum systems and may lead to the discovery of new physical phenomena.

Persistent Segment Tree

A Persistent Segment Tree is a data structure that allows for efficient querying and updating of segments within an array while preserving the history of changes. Unlike a traditional segment tree, which only maintains a single state, a persistent segment tree enables you to retain previous versions of the tree after updates. This is achieved by creating new nodes for modified segments while keeping unmodified nodes shared between versions, leading to a space-efficient structure.

The main operations include:

  • Querying: You can retrieve the sum or minimum value over a range in O(log⁡n)O(\log n)O(logn) time.
  • Updating: Each update operation takes O(log⁡n)O(\log n)O(logn) time, but instead of altering the original tree, it generates a new version of the tree that reflects the change.

This data structure is especially useful in scenarios where you need to maintain a history of changes, such as in version control systems or in applications where rollback functionality is required.