StudentsEducators

Turán’S Theorem

Turán’s Theorem is a fundamental result in extremal graph theory that addresses the maximum number of edges a graph can have without containing a complete subgraph of a specified size. More formally, the theorem states that for a graph GGG with nnn vertices, if GGG does not contain a complete subgraph Kr+1K_{r+1}Kr+1​ (a complete graph on r+1r+1r+1 vertices), the maximum number of edges e(G)e(G)e(G) is given by:

e(G)≤(1−1r)n22e(G) \leq \left(1 - \frac{1}{r}\right) \frac{n^2}{2}e(G)≤(1−r1​)2n2​

This result implies that as the number of vertices nnn increases, the number of edges can be maximized without forming a complete subgraph of size r+1r+1r+1. The construction that achieves this bound is the Turán graph T(n,r)T(n, r)T(n,r), which partitions the nnn vertices into rrr parts as evenly as possible. Turán's Theorem not only has implications in combinatorial mathematics but also in various applications such as network theory and social sciences, where understanding the structure of relationships is crucial.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Root Locus Gain Tuning

Root Locus Gain Tuning is a graphical method used in control theory to analyze and design the stability and transient response of control systems. This technique involves plotting the locations of the poles of a closed-loop transfer function as a system's gain KKK varies. The root locus plot provides insight into how the system's stability changes with different gain values.

By adjusting the gain KKK, engineers can influence the position of the poles in the complex plane, thereby altering the system's performance characteristics, such as overshoot, settling time, and steady-state error. The root locus is characterized by its branches, which start at the open-loop poles and end at the open-loop zeros. Key rules, such as the angle of departure and arrival, can help predict the behavior of the poles during tuning, making it a vital tool for achieving desired system performance.

Feynman Path Integral Formulation

The Feynman Path Integral Formulation is a fundamental approach in quantum mechanics that reinterprets quantum events as a sum over all possible paths. Instead of considering a single trajectory of a particle, this formulation posits that a particle can take every conceivable path between its initial and final states, each path contributing to the overall probability amplitude. The probability amplitude for a transition from state ∣A⟩|A\rangle∣A⟩ to state ∣B⟩|B\rangle∣B⟩ is given by the integral over all paths P\mathcal{P}P:

K(B,A)=∫PD[x(t)]eiℏS[x(t)]K(B, A) = \int_{\mathcal{P}} \mathcal{D}[x(t)] e^{\frac{i}{\hbar} S[x(t)]}K(B,A)=∫P​D[x(t)]eℏi​S[x(t)]

where S[x(t)]S[x(t)]S[x(t)] is the action associated with a particular path x(t)x(t)x(t), and ℏ\hbarℏ is the reduced Planck's constant. Each path is weighted by a phase factor eiℏSe^{\frac{i}{\hbar} S}eℏi​S, leading to constructive or destructive interference depending on the action's value. This formulation not only provides a powerful computational technique but also deepens our understanding of quantum mechanics by emphasizing the role of all possible histories in determining physical outcomes.

Cauchy-Schwarz

The Cauchy-Schwarz inequality is a fundamental result in linear algebra and analysis that asserts a relationship between two vectors in an inner product space. Specifically, it states that for any vectors u\mathbf{u}u and v\mathbf{v}v, the following inequality holds:

∣⟨u,v⟩∣≤∥u∥∥v∥| \langle \mathbf{u}, \mathbf{v} \rangle | \leq \| \mathbf{u} \| \| \mathbf{v} \|∣⟨u,v⟩∣≤∥u∥∥v∥

where ⟨u,v⟩\langle \mathbf{u}, \mathbf{v} \rangle⟨u,v⟩ denotes the inner product of u\mathbf{u}u and v\mathbf{v}v, and ∥u∥\| \mathbf{u} \|∥u∥ and ∥v∥\| \mathbf{v} \|∥v∥ are the norms (lengths) of the vectors. This inequality implies that the angle θ\thetaθ between the two vectors satisfies cos⁡(θ)≥0\cos(\theta) \geq 0cos(θ)≥0, which is a crucial concept in geometry and physics. The equality holds if and only if the vectors are linearly dependent, meaning one vector is a scalar multiple of the other. The Cauchy-Schwarz inequality is widely used in various fields, including statistics, optimization, and quantum mechanics, due to its powerful implications and applications.

Sharpe Ratio

The Sharpe Ratio is a widely used metric that helps investors understand the return of an investment compared to its risk. It is calculated by taking the difference between the expected return of the investment and the risk-free rate, then dividing this by the standard deviation of the investment's returns. Mathematically, it can be expressed as:

S=E(R)−RfσS = \frac{E(R) - R_f}{\sigma}S=σE(R)−Rf​​

where:

  • SSS is the Sharpe Ratio,
  • E(R)E(R)E(R) is the expected return of the investment,
  • RfR_fRf​ is the risk-free rate,
  • σ\sigmaσ is the standard deviation of the investment's returns.

A higher Sharpe Ratio indicates that an investment offers a better return for the risk taken, while a ratio below 1 is generally considered suboptimal. It is an essential tool for comparing the risk-adjusted performance of different investments or portfolios.

Solow Growth

The Solow Growth Model, developed by economist Robert Solow in the 1950s, is a fundamental framework for understanding long-term economic growth. It emphasizes the roles of capital accumulation, labor force growth, and technological advancement as key drivers of productivity and economic output. The model is built around the production function, typically represented as Y=F(K,L)Y = F(K, L)Y=F(K,L), where YYY is output, KKK is the capital stock, and LLL is labor.

A critical insight of the Solow model is the concept of diminishing returns to capital, which suggests that as more capital is added, the additional output produced by each new unit of capital decreases. This leads to the idea of a steady state, where the economy grows at a constant rate due to technological progress, while capital per worker stabilizes. Overall, the Solow Growth Model provides a framework for analyzing how different factors contribute to economic growth and the long-term implications of these dynamics on productivity.

Cartesian Tree

A Cartesian Tree is a binary tree that is uniquely defined by a sequence of numbers and has two key properties: it is a binary search tree (BST) with respect to the values of the nodes, and it is a min-heap with respect to the indices of the elements in the original sequence. This means that for any node NNN in the tree, all values in the left subtree are less than NNN, and all values in the right subtree are greater than NNN. Additionally, if you were to traverse the tree in a pre-order manner, the sequence of values would match the original sequence's order of appearance.

To construct a Cartesian Tree from an array, one can use the following steps:

  1. Select the Minimum: Find the index of the minimum element in the array.
  2. Create the Root: This minimum element becomes the root of the tree.
  3. Recursively Build Subtrees: Divide the array into two parts — the elements to the left of the minimum form the left subtree, and those to the right form the right subtree. Repeat the process for both subarrays.

This structure is particularly useful for applications in data structures and algorithms, such as for efficient range queries or maintaining dynamic sets.