Van der Waals heterostructures are engineered materials composed of two or more different two-dimensional (2D) materials stacked together, relying on van der Waals forces for adhesion rather than covalent bonds. These heterostructures enable the combination of distinct electronic, optical, and mechanical properties, allowing for novel functionalities that cannot be achieved with individual materials. For instance, by stacking transition metal dichalcogenides (TMDs) with graphene, researchers can create devices with tunable band gaps and enhanced carrier mobility. The alignment of the layers can be precisely controlled, leading to the emergence of phenomena such as interlayer excitons and superconductivity. The versatility of van der Waals heterostructures makes them promising candidates for applications in next-generation electronics, photonics, and quantum computing.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.