StudentsEducators

Chandrasekhar Limit

The Chandrasekhar Limit is a fundamental concept in astrophysics, named after the Indian astrophysicist Subrahmanyan Chandrasekhar, who first calculated it in the 1930s. This limit defines the maximum mass of a stable white dwarf star, which is approximately 1.4 times the mass of the Sun (M⊙M_{\odot}M⊙​). Beyond this mass, a white dwarf cannot support itself against gravitational collapse due to electron degeneracy pressure, leading to a potential collapse into a neutron star or even a black hole. The equation governing this limit involves the balance between gravitational forces and quantum mechanical effects, primarily described by the principles of quantum mechanics and relativity. When the mass exceeds the Chandrasekhar Limit, the star undergoes catastrophic changes, often resulting in a supernova explosion or the formation of more compact stellar remnants. Understanding this limit is essential for studying the life cycles of stars and the evolution of the universe.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Mach-Zehnder Interferometer

The Mach-Zehnder Interferometer is an optical device used to measure phase changes in light waves. It consists of two beam splitters and two mirrors arranged in such a way that a light beam is split into two separate paths. These paths can undergo different phase shifts due to external factors such as changes in the medium or environmental conditions. After traveling through their respective paths, the beams are recombined at the second beam splitter, leading to an interference pattern that can be analyzed.

The interference pattern is a result of the superposition of the two light beams, which can be constructive or destructive depending on the phase difference Δϕ\Delta \phiΔϕ between them. The intensity of the combined light can be expressed as:

I=I0(1+cos⁡(Δϕ))I = I_0 \left( 1 + \cos(\Delta \phi) \right)I=I0​(1+cos(Δϕ))

where I0I_0I0​ is the maximum intensity. This device is widely used in various applications, including precision measurements in physics, telecommunications, and quantum mechanics.

Genome-Wide Association

Genome-Wide Association Studies (GWAS) are a powerful method used in genetics to identify associations between specific genetic variants and traits or diseases across the entire genome. These studies typically involve scanning genomes from many individuals to find common genetic variations, usually single nucleotide polymorphisms (SNPs), that occur more frequently in individuals with a particular trait than in those without it. The aim is to uncover the genetic basis of complex diseases, which are influenced by multiple genes and environmental factors.

The analysis often involves the use of statistical methods to assess the significance of these associations, often employing a threshold to determine which SNPs are considered significant. This method has led to the identification of numerous genetic loci associated with conditions such as diabetes, heart disease, and various cancers, thereby enhancing our understanding of the biological mechanisms underlying these diseases. Ultimately, GWAS can contribute to the development of personalized medicine by identifying genetic risk factors that can inform prevention and treatment strategies.

Bragg Diffraction

Bragg Diffraction is a phenomenon that occurs when X-rays or neutrons are scattered by the atomic planes in a crystal lattice. The condition for constructive interference, which is necessary for observing this diffraction, is given by Bragg's Law, expressed mathematically as:

nλ=2dsin⁡θn\lambda = 2d\sin\thetanλ=2dsinθ

where nnn is an integer (the order of the diffraction), λ\lambdaλ is the wavelength of the incident radiation, ddd is the distance between the crystal planes, and θ\thetaθ is the angle of incidence. When these conditions are met, the scattered waves from different planes reinforce each other, producing a detectable intensity pattern. This technique is crucial in determining the crystal structure and arrangement of atoms in solid materials, making it a fundamental tool in fields such as materials science, chemistry, and solid-state physics. By analyzing the resulting diffraction patterns, scientists can infer important structural information about the material being studied.

Agency Cost

Agency cost refers to the expenses incurred to resolve conflicts of interest between stakeholders in a business, primarily between principals (owners or shareholders) and agents (management). These costs arise when the agent does not act in the best interest of the principal, which can lead to inefficiencies and loss of value. Agency costs can manifest in various forms, including:

  • Monitoring Costs: Expenses related to overseeing the agent's performance, such as audits and performance evaluations.
  • Bonding Costs: Costs incurred by the agent to assure the principal that they will act in the principal's best interest, such as performance-based compensation structures.
  • Residual Loss: The reduction in welfare experienced by the principal due to the divergence of interests between the principal and agent, even after monitoring and bonding efforts have been implemented.

Ultimately, agency costs can affect the overall efficiency and profitability of a business, making it crucial for organizations to implement effective governance mechanisms.

Digital Forensics Investigations

Digital forensics investigations refer to the process of collecting, analyzing, and preserving digital evidence from electronic devices and networks to uncover information related to criminal activities or security breaches. These investigations often involve a systematic approach that includes data acquisition, analysis, and presentation of findings in a manner suitable for legal proceedings. Key components of digital forensics include:

  • Data Recovery: Retrieving deleted or damaged files from storage devices.
  • Evidence Analysis: Examining data logs, emails, and file systems to identify malicious activities or breaches.
  • Chain of Custody: Maintaining a documented history of the evidence to ensure its integrity and authenticity.

The ultimate goal of digital forensics is to provide a clear and accurate representation of the digital footprint left by users, which can be crucial for legal cases, corporate investigations, or cybersecurity assessments.

Lucas Supply Function

The Lucas Supply Function is a key concept in macroeconomics that illustrates how the supply of goods is influenced by expectations of future economic conditions. Developed by economist Robert E. Lucas, this function highlights the importance of rational expectations, suggesting that producers will adjust their supply based on anticipated future prices rather than just current prices. In essence, the function posits that the supply of goods can be expressed as a function of current outputs and the expected future price level, represented mathematically as:

St=f(Yt,E[Pt+1])S_t = f(Y_t, E[P_{t+1}])St​=f(Yt​,E[Pt+1​])

where StS_tSt​ is the supply at time ttt, YtY_tYt​ is the current output, and E[Pt+1]E[P_{t+1}]E[Pt+1​] is the expected price level in the next period. This relationship emphasizes that economic agents make decisions based on the information they have, thus linking supply with expectations and creating a dynamic interaction between supply and demand in the economy. The Lucas Supply Function plays a significant role in understanding the implications of monetary policy and its effects on inflation and output.