StudentsEducators

Chandrasekhar Mass Derivation

The Chandrasekhar Mass is a fundamental limit in astrophysics that defines the maximum mass of a stable white dwarf star. It is derived from the principles of quantum mechanics and thermodynamics, particularly using the concept of electron degeneracy pressure, which arises from the Pauli exclusion principle. As a star exhausts its nuclear fuel, it collapses under gravity, and if its mass is below approximately 1.4 M⊙1.4 \, M_{\odot}1.4M⊙​ (solar masses), the electron degeneracy pressure can counteract this collapse, allowing the star to remain stable.

The derivation includes the balance of forces where the gravitational force (FgF_gFg​) acting on the star is balanced by the electron degeneracy pressure (FeF_eFe​), leading to the condition:

Fg=FeF_g = F_eFg​=Fe​

This relationship can be expressed mathematically, ultimately leading to the conclusion that the Chandrasekhar mass limit is given by:

MCh≈0.7 ℏ2G3/2me5/3μe4/3≈1.4 M⊙M_{Ch} \approx \frac{0.7 \, \hbar^2}{G^{3/2} m_e^{5/3} \mu_e^{4/3}} \approx 1.4 \, M_{\odot}MCh​≈G3/2me5/3​μe4/3​0.7ℏ2​≈1.4M⊙​

where ℏ\hbarℏ is the reduced Planck's constant, GGG is the gravitational constant, mem_eme​ is the mass of an electron, and $

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Chebyshev Nodes

Chebyshev Nodes are a specific set of points that are used particularly in polynomial interpolation to minimize the error associated with approximating a function. They are defined as the roots of the Chebyshev polynomials of the first kind, which are given by the formula:

Tn(x)=cos⁡(n⋅arccos⁡(x))T_n(x) = \cos(n \cdot \arccos(x))Tn​(x)=cos(n⋅arccos(x))

for xxx in the interval [−1,1][-1, 1][−1,1]. The Chebyshev Nodes are calculated using the formula:

xk=cos⁡(2k−12n⋅π)for k=1,2,…,nx_k = \cos\left(\frac{2k - 1}{2n} \cdot \pi\right) \quad \text{for } k = 1, 2, \ldots, nxk​=cos(2n2k−1​⋅π)for k=1,2,…,n

These nodes have several important properties, including the fact that they are distributed more closely at the edges of the interval than in the center, which helps to reduce the phenomenon known as Runge's phenomenon. By using Chebyshev Nodes, one can achieve better convergence rates in polynomial interpolation and minimize oscillations, making them particularly useful in numerical analysis and computational mathematics.

Tolman-Oppenheimer-Volkoff

The Tolman-Oppenheimer-Volkoff (TOV) equation is a fundamental relationship in astrophysics that describes the structure of a stable, spherically symmetric star in hydrostatic equilibrium, particularly neutron stars. It extends the principles of general relativity to account for the effects of gravity on dense matter. The TOV equation can be expressed mathematically as:

dP(r)dr=−G(ρ(r)+P(r)c2)(M(r)+4πr3P(r)c2)r2(1−2GM(r)c2r)\frac{dP(r)}{dr} = -\frac{G \left( \rho(r) + \frac{P(r)}{c^2} \right) \left( M(r) + 4\pi r^3 \frac{P(r)}{c^2} \right)}{r^2 \left( 1 - \frac{2GM(r)}{c^2 r} \right)}drdP(r)​=−r2(1−c2r2GM(r)​)G(ρ(r)+c2P(r)​)(M(r)+4πr3c2P(r)​)​

where P(r)P(r)P(r) is the pressure, ρ(r)\rho(r)ρ(r) is the density, M(r)M(r)M(r) is the mass within radius rrr, GGG is the gravitational constant, and ccc is the speed of light. This equation helps in understanding the maximum mass that a neutron star can have, known as the Tolman-Oppenheimer-Volkoff limit, which is crucial for predicting the outcomes of supernova explosions and the formation of black holes. By analyzing solutions to the TOV equation, astrophysicists

Lebesgue-Stieltjes Integral

The Lebesgue-Stieltjes integral is a generalization of the Lebesgue integral, which allows for integration with respect to a more general type of measure. Specifically, it integrates a function fff with respect to another function ggg, where ggg is a non-decreasing function. The integral is denoted as:

∫abf(x) dg(x)\int_a^b f(x) \, dg(x)∫ab​f(x)dg(x)

This formulation enables the integration of functions that may not be absolutely continuous, thereby expanding the types of functions and measures that can be integrated. It is particularly useful in probability theory and in the study of stochastic processes, as it allows for the integration of random variables with respect to cumulative distribution functions. The properties of the integral, including linearity and monotonicity, make it a powerful tool in analysis and applied mathematics.

Avl Tree Rotations

AVL Trees are a type of self-balancing binary search tree, where the heights of the two child subtrees of any node differ by at most one. When an insertion or deletion operation causes this balance to be violated, rotations are performed to restore it. There are four types of rotations used in AVL Trees:

  1. Right Rotation: This is applied when a node becomes unbalanced due to a left-heavy subtree. The right rotation involves making the left child the new root of the subtree and adjusting the pointers accordingly.

  2. Left Rotation: This is the opposite of the right rotation and is used when a node becomes unbalanced due to a right-heavy subtree. Here, the right child becomes the new root of the subtree.

  3. Left-Right Rotation: This is a double rotation that combines a left rotation followed by a right rotation. It is used when a left child has a right-heavy subtree.

  4. Right-Left Rotation: Another double rotation that combines a right rotation followed by a left rotation, which is applied when a right child has a left-heavy subtree.

These rotations help to maintain the balance factor, defined as the height difference between the left and right subtrees, ensuring efficient operations on the tree.

Hamming Distance

Hamming Distance is a metric used to measure the difference between two strings of equal length. It is defined as the number of positions at which the corresponding symbols differ. For example, the Hamming distance between the strings "karolin" and "kathrin" is 3, as they differ in three positions. This concept is particularly useful in various fields such as information theory, coding theory, and genetics, where it can be used to determine error rates in data transmission or to compare genetic sequences. To calculate the Hamming distance, one can use the formula:

d(x,y)=∑i=1n1 if xi≠yi else 0d(x, y) = \sum_{i=1}^{n} \text{1 if } x_i \neq y_i \text{ else } 0d(x,y)=i=1∑n​1 if xi​=yi​ else 0

where d(x,y)d(x, y)d(x,y) is the Hamming distance, nnn is the length of the strings, and xix_ixi​ and yiy_iyi​ are the symbols at position iii in strings xxx and yyy, respectively.

Weierstrass Preparation Theorem

The Weierstrass Preparation Theorem is a fundamental result in complex analysis and algebraic geometry that provides a way to study holomorphic functions near a point where they have a zero. Specifically, it states that for a holomorphic function f(z)f(z)f(z) defined in a neighborhood of a point z0z_0z0​ where f(z0)=0f(z_0) = 0f(z0​)=0, we can write f(z)f(z)f(z) in the form:

f(z)=(z−z0)kg(z)f(z) = (z - z_0)^k g(z)f(z)=(z−z0​)kg(z)

where kkk is the order of the zero at z0z_0z0​ and g(z)g(z)g(z) is a holomorphic function that does not vanish at z0z_0z0​. This decomposition is particularly useful because it allows us to isolate the behavior of f(z)f(z)f(z) around its zeros and analyze it more easily. Moreover, g(z)g(z)g(z) can be expressed as a power series, ensuring that we can study the local properties of the function without losing generality. The theorem is instrumental in various areas, including the study of singularities, local rings, and deformation theory.