Eigenvector Centrality is a measure used in network analysis to determine the influence of a node within a network. Unlike simple degree centrality, which counts the number of direct connections a node has, eigenvector centrality accounts for the quality and influence of those connections. A node is considered important not just because it is connected to many other nodes, but also because it is connected to other influential nodes.
Mathematically, the eigenvector centrality of a node can be defined using the adjacency matrix of the graph:
Here, represents the eigenvalue, and is the eigenvector corresponding to that eigenvalue. The centrality score of a node is determined by its eigenvector component, reflecting its connectedness to other well-connected nodes in the network. This makes eigenvector centrality particularly useful in social networks, citation networks, and other complex systems where influence is a key factor.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.