StudentsEducators

Fama-French Model

The Fama-French Model is an asset pricing model developed by Eugene Fama and Kenneth French that extends the Capital Asset Pricing Model (CAPM) by incorporating additional factors to better explain stock returns. While the CAPM considers only the market risk factor, the Fama-French model includes two additional factors: size and value. The model suggests that smaller companies (the size factor, SMB - Small Minus Big) and companies with high book-to-market ratios (the value factor, HML - High Minus Low) tend to outperform larger companies and those with low book-to-market ratios, respectively.

The expected return on a stock can be expressed as:

E(Ri)=Rf+βi(E(Rm)−Rf)+si⋅SMB+hi⋅HMLE(R_i) = R_f + \beta_i (E(R_m) - R_f) + s_i \cdot SMB + h_i \cdot HMLE(Ri​)=Rf​+βi​(E(Rm​)−Rf​)+si​⋅SMB+hi​⋅HML

where:

  • E(Ri)E(R_i)E(Ri​) is the expected return of the asset,
  • RfR_fRf​ is the risk-free rate,
  • βi\beta_iβi​ is the sensitivity of the asset to market risk,
  • E(Rm)−RfE(R_m) - R_fE(Rm​)−Rf​ is the market risk premium,
  • sis_isi​ measures the exposure to the size factor,
  • hih_ihi​ measures the exposure to the value factor.

By accounting for these additional factors, the Fama-French model provides a more comprehensive framework for understanding variations in stock

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Fixed Effects Vs Random Effects Models

Fixed effects and random effects models are two statistical approaches used in the analysis of panel data, which involves observations over time for the same subjects. Fixed effects models control for time-invariant characteristics of the subjects by using only the within-subject variation, effectively removing the influence of these characteristics from the estimation. This is particularly useful when the focus is on understanding the impact of variables that change over time. In contrast, random effects models assume that the individual-specific effects are uncorrelated with the independent variables and allow for both within and between-subject variation to be used in the estimation. This can lead to more efficient estimates if the assumptions hold true, but if the assumptions are violated, it can result in biased estimates.

To decide between these models, researchers often employ the Hausman test, which evaluates whether the unique errors are correlated with the regressors, thereby determining the appropriateness of using random effects.

Schwarzschild Radius

The Schwarzschild radius is a fundamental concept in the field of general relativity, representing the radius of a sphere such that, if all the mass of an object were to be compressed within that sphere, the escape velocity would equal the speed of light. This radius is particularly significant for black holes, as it defines the event horizon—the boundary beyond which nothing can escape the gravitational pull of the black hole. The formula for calculating the Schwarzschild radius RsR_sRs​ is given by:

Rs=2GMc2R_s = \frac{2GM}{c^2}Rs​=c22GM​

where GGG is the gravitational constant, MMM is the mass of the object, and ccc is the speed of light in a vacuum. For example, the Schwarzschild radius of the Earth is approximately 9 millimeters, while for a stellar black hole, it can be several kilometers. Understanding the Schwarzschild radius is crucial for studying the behavior of objects under intense gravitational fields and the nature of black holes in the universe.

Kolmogorov Axioms

The Kolmogorov Axioms form the foundational framework for probability theory, established by the Russian mathematician Andrey Kolmogorov in the 1930s. These axioms define a probability space (S,F,P)(S, \mathcal{F}, P)(S,F,P), where SSS is the sample space, F\mathcal{F}F is a σ-algebra of events, and PPP is the probability measure. The three main axioms are:

  1. Non-negativity: For any event A∈FA \in \mathcal{F}A∈F, the probability P(A)P(A)P(A) is always non-negative:

P(A)≥0P(A) \geq 0P(A)≥0

  1. Normalization: The probability of the entire sample space equals 1:

P(S)=1P(S) = 1P(S)=1

  1. Countable Additivity: For any countable collection of mutually exclusive events A1,A2,…∈FA_1, A_2, \ldots \in \mathcal{F}A1​,A2​,…∈F, the probability of their union is equal to the sum of their probabilities:

P(⋃i=1∞Ai)=∑i=1∞P(Ai)P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)P(⋃i=1∞​Ai​)=∑i=1∞​P(Ai​)

These axioms provide the basis for further developments in probability theory and allow for rigorous manipulation of probabilities

Gamma Function Properties

The Gamma function, denoted as Γ(n)\Gamma(n)Γ(n), extends the concept of factorials to real and complex numbers. Its most notable property is that for any positive integer nnn, the function satisfies the relationship Γ(n)=(n−1)!\Gamma(n) = (n-1)!Γ(n)=(n−1)!. Another important property is the recursive relation, given by Γ(n+1)=n⋅Γ(n)\Gamma(n+1) = n \cdot \Gamma(n)Γ(n+1)=n⋅Γ(n), which allows for the computation of the function values for various integers. The Gamma function also exhibits the identity Γ(12)=π\Gamma(\frac{1}{2}) = \sqrt{\pi}Γ(21​)=π​, illustrating its connection to various areas in mathematics, including probability and statistics. Additionally, it has asymptotic behaviors that can be approximated using Stirling's approximation:

Γ(n)∼2πn(ne)nas n→∞.\Gamma(n) \sim \sqrt{2 \pi n} \left( \frac{n}{e} \right)^n \quad \text{as } n \to \infty.Γ(n)∼2πn​(en​)nas n→∞.

These properties not only highlight the versatility of the Gamma function but also its fundamental role in various mathematical applications, including calculus and complex analysis.

Buck Converter

A Buck Converter is a type of DC-DC converter that steps down voltage while stepping up current. It operates on the principle of storing energy in an inductor and then releasing it at a lower voltage. The converter uses a switching element (typically a transistor), a diode, an inductor, and a capacitor to efficiently convert a higher input voltage VinV_{in}Vin​ to a lower output voltage VoutV_{out}Vout​. The output voltage can be controlled by adjusting the duty cycle of the switching element, defined as the ratio of the time the switch is on to the total time of one cycle. The efficiency of a Buck Converter can be quite high, often exceeding 90%, making it ideal for battery-operated devices and power management applications.

Key advantages of Buck Converters include:

  • High efficiency: Minimizes energy loss.
  • Compact size: Suitable for applications with space constraints.
  • Adjustable output: Easily tuned to specific voltage requirements.

Sharpe Ratio

The Sharpe Ratio is a widely used metric that helps investors understand the return of an investment compared to its risk. It is calculated by taking the difference between the expected return of the investment and the risk-free rate, then dividing this by the standard deviation of the investment's returns. Mathematically, it can be expressed as:

S=E(R)−RfσS = \frac{E(R) - R_f}{\sigma}S=σE(R)−Rf​​

where:

  • SSS is the Sharpe Ratio,
  • E(R)E(R)E(R) is the expected return of the investment,
  • RfR_fRf​ is the risk-free rate,
  • σ\sigmaσ is the standard deviation of the investment's returns.

A higher Sharpe Ratio indicates that an investment offers a better return for the risk taken, while a ratio below 1 is generally considered suboptimal. It is an essential tool for comparing the risk-adjusted performance of different investments or portfolios.