StudentsEducators

Fama-French Model

The Fama-French Model is an asset pricing model developed by Eugene Fama and Kenneth French that extends the Capital Asset Pricing Model (CAPM) by incorporating additional factors to better explain stock returns. While the CAPM considers only the market risk factor, the Fama-French model includes two additional factors: size and value. The model suggests that smaller companies (the size factor, SMB - Small Minus Big) and companies with high book-to-market ratios (the value factor, HML - High Minus Low) tend to outperform larger companies and those with low book-to-market ratios, respectively.

The expected return on a stock can be expressed as:

E(Ri)=Rf+βi(E(Rm)−Rf)+si⋅SMB+hi⋅HMLE(R_i) = R_f + \beta_i (E(R_m) - R_f) + s_i \cdot SMB + h_i \cdot HMLE(Ri​)=Rf​+βi​(E(Rm​)−Rf​)+si​⋅SMB+hi​⋅HML

where:

  • E(Ri)E(R_i)E(Ri​) is the expected return of the asset,
  • RfR_fRf​ is the risk-free rate,
  • βi\beta_iβi​ is the sensitivity of the asset to market risk,
  • E(Rm)−RfE(R_m) - R_fE(Rm​)−Rf​ is the market risk premium,
  • sis_isi​ measures the exposure to the size factor,
  • hih_ihi​ measures the exposure to the value factor.

By accounting for these additional factors, the Fama-French model provides a more comprehensive framework for understanding variations in stock

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Zeeman Splitting

Zeeman Splitting is a phenomenon observed in atomic physics where spectral lines are split into multiple components in the presence of a magnetic field. This effect occurs due to the interaction between the magnetic field and the magnetic dipole moment associated with the angular momentum of electrons in an atom. When an external magnetic field is applied, the energy levels of the atomic states are shifted, leading to the splitting of the spectral lines.

The energy shift can be described by the equation:

ΔE=μB⋅B⋅mj\Delta E = \mu_B \cdot B \cdot m_jΔE=μB​⋅B⋅mj​

where ΔE\Delta EΔE is the energy shift, μB\mu_BμB​ is the Bohr magneton, BBB is the magnetic field strength, and mjm_jmj​ is the magnetic quantum number. The resulting pattern can be classified into two main types: normal Zeeman effect (where the splitting occurs in triplet forms) and anomalous Zeeman effect (which can involve more complex splitting patterns). This phenomenon is crucial for various applications, including magnetic resonance imaging (MRI) and the study of stellar atmospheres.

Agent-Based Modeling In Economics

Agent-Based Modeling (ABM) is a computational approach used in economics to simulate the interactions of autonomous agents, such as individuals or firms, within a defined environment. This method allows researchers to explore complex economic phenomena by modeling the behaviors and decisions of agents based on predefined rules. ABM is particularly useful for studying systems where traditional analytical methods fall short, such as in cases of non-linear dynamics, emergence, or heterogeneity among agents.

Key features of ABM in economics include:

  • Decentralization: Agents operate independently, making their own decisions based on local information and interactions.
  • Adaptation: Agents can adapt their strategies based on past experiences or changes in the environment.
  • Emergence: Macro-level patterns and phenomena can emerge from the simple rules governing individual agents, providing insights into market dynamics and collective behavior.

Overall, ABM serves as a powerful tool for economists to analyze and predict outcomes in complex systems, offering a more nuanced understanding of economic interactions and behaviors.

Digital Filter Design Methods

Digital filter design methods are crucial in signal processing, enabling the manipulation and enhancement of signals. These methods can be broadly classified into two categories: FIR (Finite Impulse Response) and IIR (Infinite Impulse Response) filters. FIR filters are characterized by a finite number of coefficients and are always stable, making them easier to design and implement, while IIR filters can achieve a desired frequency response with fewer coefficients but may be less stable. Common design techniques include the window method, where a desired frequency response is multiplied by a window function, and the bilinear transformation, which maps an analog filter design into the digital domain while preserving frequency characteristics. Additionally, the frequency sampling method and optimization techniques such as the Parks-McClellan algorithm are also widely employed to achieve specific design criteria. Each method has its own advantages and applications, depending on the requirements of the system being designed.

Rankine Cycle

The Rankine cycle is a thermodynamic cycle that converts heat into mechanical work, commonly used in power generation. It operates by circulating a working fluid, typically water, through four key processes: isobaric heat addition, isentropic expansion, isobaric heat rejection, and isentropic compression. During the heat addition phase, the fluid absorbs heat from an external source, causing it to vaporize and expand through a turbine, which generates mechanical work. Following this, the vapor is cooled and condensed back into a liquid, completing the cycle. The efficiency of the Rankine cycle can be improved by incorporating features such as reheat and regeneration, which allow for better heat utilization and lower fuel consumption.

Mathematically, the efficiency η\etaη of the Rankine cycle can be expressed as:

η=WnetQin\eta = \frac{W_{\text{net}}}{Q_{\text{in}}}η=Qin​Wnet​​

where WnetW_{\text{net}}Wnet​ is the net work output and QinQ_{\text{in}}Qin​ is the heat input.

Neural Architecture Search

Neural Architecture Search (NAS) is a method used to automate the design of neural network architectures, aiming to discover the optimal configuration for a given task without manual intervention. This process involves using algorithms to explore a vast search space of possible architectures, evaluating each design based on its performance on a specific dataset. Key techniques in NAS include reinforcement learning, evolutionary algorithms, and gradient-based optimization, each contributing to the search for efficient models. The ultimate goal is to identify architectures that achieve superior accuracy and efficiency compared to human-designed models. In recent years, NAS has gained significant attention for its ability to produce state-of-the-art results in various domains, such as image classification and natural language processing, often outperforming traditional hand-crafted architectures.

Dirac Spinor

A Dirac spinor is a mathematical object used in quantum mechanics and quantum field theory to describe fermions, which are particles with half-integer spin, such as electrons. It is a solution to the Dirac equation, formulated by Paul Dirac in 1928, which combines quantum mechanics and special relativity to account for the behavior of spin-1/2 particles. A Dirac spinor typically consists of four components and can be represented in the form:

Ψ=(ψ1ψ2ψ3ψ4)\Psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}Ψ=​ψ1​ψ2​ψ3​ψ4​​​

where ψ1,ψ2\psi_1, \psi_2ψ1​,ψ2​ correspond to "spin up" and "spin down" states, while ψ3,ψ4\psi_3, \psi_4ψ3​,ψ4​ account for particle and antiparticle states. The significance of Dirac spinors lies in their ability to encapsulate both the intrinsic spin of particles and their relativistic properties, leading to predictions such as the existence of antimatter. In essence, the Dirac spinor serves as a foundational element in the formulation of quantum electrodynamics and the Standard Model of particle physics.