StudentsEducators

Fano Resonance

Fano Resonance is a phenomenon observed in quantum mechanics and condensed matter physics, characterized by the interference between a discrete quantum state and a continuum of states. This interference results in an asymmetric line shape in the absorption or scattering spectra, which is distinct from the typical Lorentzian profile. The Fano effect can be described mathematically using the Fano parameter qqq, which quantifies the relative strength of the discrete state to the continuum. As the parameter qqq varies, the shape of the resonance changes from a symmetric peak to an asymmetric one, often displaying a dip and a peak near the resonance energy. This phenomenon has important implications in various fields, including optics, solid-state physics, and nanotechnology, where it can be utilized to design advanced optical devices or sensors.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Graphene Oxide Chemical Reduction

Graphene oxide (GO) is a derivative of graphene that contains various oxygen-containing functional groups such as hydroxyl, epoxide, and carboxyl groups. The chemical reduction of graphene oxide involves removing these oxygen groups to restore the electrical conductivity and structural integrity of graphene. This process can be achieved using various reducing agents, including hydrazine, sodium borohydride, or even green reducing agents like ascorbic acid. The reduction process not only enhances the electrical properties of graphene but also improves its mechanical strength and thermal conductivity. The overall reaction can be represented as:

GO+Reducing Agent→Reduced Graphene Oxide (rGO)+By-products\text{GO} + \text{Reducing Agent} \rightarrow \text{Reduced Graphene Oxide (rGO)} + \text{By-products}GO+Reducing Agent→Reduced Graphene Oxide (rGO)+By-products

Ultimately, the degree of reduction can be controlled to tailor the properties of the resulting material for specific applications in electronics, energy storage, and composite materials.

Bessel Functions

Bessel functions are a family of solutions to Bessel's differential equation, which commonly arises in problems with cylindrical symmetry, such as heat conduction, vibrations, and wave propagation. These functions are named after the mathematician Friedrich Bessel and can be expressed as Bessel functions of the first kind Jn(x)J_n(x)Jn​(x) and Bessel functions of the second kind Yn(x)Y_n(x)Yn​(x), where nnn is the order of the function. The first kind is finite at the origin for non-negative integers, while the second kind diverges at the origin.

Bessel functions possess unique properties, including orthogonality and recurrence relations, making them valuable in various fields such as physics and engineering. They are often represented graphically, showcasing oscillatory behavior that resembles sine and cosine functions but with a decaying amplitude. The general form of the Bessel function of the first kind is given by the series expansion:

Jn(x)=∑k=0∞(−1)kk!Γ(n+k+1)(x2)n+2kJ_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(n+k+1)} \left( \frac{x}{2} \right)^{n+2k}Jn​(x)=k=0∑∞​k!Γ(n+k+1)(−1)k​(2x​)n+2k

where Γ\GammaΓ is the gamma function.

Describing Function Analysis

Describing Function Analysis (DFA) is a powerful tool used in control engineering to analyze nonlinear systems. This method approximates the nonlinear behavior of a system by representing it in terms of its frequency response to sinusoidal inputs. The core idea is to derive a describing function, which is essentially a mathematical function that characterizes the output of a nonlinear element when subjected to a sinusoidal input.

The describing function N(A)N(A)N(A) is defined as the ratio of the output amplitude YYY to the input amplitude AAA for a given frequency ω\omegaω:

N(A)=YAN(A) = \frac{Y}{A}N(A)=AY​

This approach allows engineers to use linear control techniques to predict the behavior of nonlinear systems in the frequency domain. DFA is particularly useful for stability analysis, as it helps in determining the conditions under which a nonlinear system will remain stable or become unstable. However, it is important to note that DFA is an approximation, and its accuracy depends on the characteristics of the nonlinearity being analyzed.

Groebner Basis

A Groebner Basis is a specific kind of generating set for an ideal in a polynomial ring that has desirable algorithmic properties. It provides a way to simplify the process of solving systems of polynomial equations and is particularly useful in computational algebraic geometry and algebraic number theory. The key feature of a Groebner Basis is that it allows for the elimination of variables from equations, making it easier to analyze and solve them.

To define a Groebner Basis formally, consider a polynomial ideal III generated by a set of polynomials F={f1,f2,…,fm}F = \{ f_1, f_2, \ldots, f_m \}F={f1​,f2​,…,fm​}. A set GGG is a Groebner Basis for III if for every polynomial f∈If \in If∈I, the leading term of fff (with respect to a given monomial ordering) is divisible by the leading term of at least one polynomial in GGG. This property allows for the unique representation of polynomials in the ideal, which facilitates the use of algorithms like Buchberger's algorithm to compute the basis itself.

Lucas Critique Explained

The Lucas Critique, formulated by economist Robert Lucas in the 1970s, argues that traditional macroeconomic models fail to predict the effects of policy changes because they do not account for changes in people's expectations. According to Lucas, when policymakers implement a new economic policy, individuals adjust their behavior based on the anticipated future effects of that policy. This adaptation undermines the reliability of historical data used to guide policy decisions. In essence, the critique emphasizes that economic agents are forward-looking and that their expectations can alter the outcomes of policies, making it crucial for models to incorporate rational expectations. Consequently, any effective macroeconomic model must be based on the idea that agents will modify their behavior in response to policy changes, leading to potentially different outcomes than those predicted by previous models.

Topological Insulators

Topological insulators are materials that exhibit unique electronic properties due to their topological order. These materials act as insulators in their bulk—meaning they do not conduct electricity—while allowing conductive states on their surfaces or edges. This phenomenon arises from the concept of topology in physics, where certain properties remain unchanged under continuous transformations.

The surface states of topological insulators are characterized by their robustness against impurities and defects, making them promising candidates for applications in quantum computing and spintronics. Mathematically, their behavior can often be described using concepts from band theory and topological invariant classifications, such as the Z2 invariant. In summary, topological insulators represent a fascinating intersection of condensed matter physics and materials science, with significant implications for future technologies.