StudentsEducators

Farkas Lemma

Farkas Lemma is a fundamental result in linear inequalities and convex analysis, providing a criterion for the solvability of systems of linear inequalities. It states that for a given matrix AAA and vector bbb, at least one of the following statements is true:

  1. There exists a vector xxx such that Ax≤bAx \leq bAx≤b.
  2. There exists a vector yyy such that ATy=0A^T y = 0ATy=0 and y≥0y \geq 0y≥0 while also ensuring that bTy<0b^T y < 0bTy<0.

This lemma essentially establishes a duality relationship between feasible solutions of linear inequalities and the existence of certain non-negative linear combinations of the constraints. It is widely used in optimization, particularly in the context of linear programming, as it helps in determining whether a system of inequalities is consistent or not. Overall, Farkas Lemma serves as a powerful tool in both theoretical and applied mathematics, especially in economics and resource allocation problems.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Goldbach Conjecture

The Goldbach Conjecture is one of the oldest unsolved problems in number theory, proposed by the Prussian mathematician Christian Goldbach in 1742. It asserts that every even integer greater than two can be expressed as the sum of two prime numbers. For example, the number 4 can be written as 2+22 + 22+2, 6 as 3+33 + 33+3, and 8 as 3+53 + 53+5. Despite extensive computational evidence supporting the conjecture for even numbers up to very large limits, a formal proof has yet to be found. The conjecture can be mathematically stated as follows:

∀n∈Z, if n>2 and n is even, then ∃p1,p2∈P such that n=p1+p2\forall n \in \mathbb{Z}, \text{ if } n > 2 \text{ and } n \text{ is even, then } \exists p_1, p_2 \in \mathbb{P} \text{ such that } n = p_1 + p_2∀n∈Z, if n>2 and n is even, then ∃p1​,p2​∈P such that n=p1​+p2​

where P\mathbb{P}P denotes the set of all prime numbers.

Riesz Representation

The Riesz Representation Theorem is a fundamental result in functional analysis that establishes a deep connection between linear functionals and measures. Specifically, it states that for every continuous linear functional fff on a Hilbert space HHH, there exists a unique vector y∈Hy \in Hy∈H such that for all x∈Hx \in Hx∈H, the functional can be expressed as

f(x)=⟨x,y⟩,f(x) = \langle x, y \rangle,f(x)=⟨x,y⟩,

where ⟨⋅,⋅⟩\langle \cdot, \cdot \rangle⟨⋅,⋅⟩ denotes the inner product on the space. This theorem highlights that every bounded linear functional can be represented as an inner product with a fixed element of the space, thus linking functional analysis and geometry in Hilbert spaces. The Riesz Representation Theorem not only provides a powerful tool for solving problems in mathematical physics and engineering but also lays the groundwork for further developments in measure theory and probability. Additionally, the uniqueness of the vector yyy ensures that this representation is well-defined, reinforcing the structure and properties of Hilbert spaces.

Graph Isomorphism

Graph Isomorphism is a concept in graph theory that describes when two graphs can be considered the same in terms of their structure, even if their representations differ. Specifically, two graphs G1=(V1,E1)G_1 = (V_1, E_1)G1​=(V1​,E1​) and G2=(V2,E2)G_2 = (V_2, E_2)G2​=(V2​,E2​) are isomorphic if there exists a bijective function f:V1→V2f: V_1 \rightarrow V_2f:V1​→V2​ such that any two vertices uuu and vvv in G1G_1G1​ are adjacent if and only if the corresponding vertices f(u)f(u)f(u) and f(v)f(v)f(v) in G2G_2G2​ are also adjacent. This means that the connectivity and relationships between the vertices are preserved under the mapping.

Isomorphic graphs have the same number of vertices and edges, and their degree sequences (the list of vertex degrees) are identical. However, the challenge lies in efficiently determining whether two graphs are isomorphic, as no polynomial-time algorithm is known for this problem, and it is a significant topic in computational complexity.

Suffix Automaton

A suffix automaton is a specialized data structure used to represent the set of all substrings of a given string efficiently. It is a type of finite state automaton that captures the suffixes of a string in such a way that allows fast query operations, such as checking if a specific substring exists or counting the number of distinct substrings. The construction of a suffix automaton for a string of length nnn can be done in O(n)O(n)O(n) time.

The automaton consists of states that correspond to different substrings, with transitions representing the addition of characters to these substrings. Notably, each state in a suffix automaton has a unique longest substring represented by it, making it an efficient tool for various applications in string processing, such as pattern matching and bioinformatics. Overall, the suffix automaton is a powerful and compact representation of string data that optimizes many common string operations.

Efficient Frontier

The Efficient Frontier is a concept from modern portfolio theory that illustrates the set of optimal investment portfolios that offer the highest expected return for a given level of risk, or the lowest risk for a given level of expected return. It is represented graphically as a curve on a risk-return plot, where the x-axis denotes risk (typically measured by standard deviation) and the y-axis denotes expected return. Portfolios that lie on the Efficient Frontier are considered efficient, meaning that no other portfolio exists with a higher return for the same risk or lower risk for the same return.

Investors can use the Efficient Frontier to make informed choices about asset allocation by selecting portfolios that align with their individual risk tolerance. Mathematically, if RRR represents expected return and σ\sigmaσ represents risk (standard deviation), the goal is to maximize RRR subject to a given level of σ\sigmaσ or to minimize σ\sigmaσ for a given level of RRR. The Efficient Frontier helps to clarify the trade-offs between risk and return, enabling investors to construct portfolios that best meet their financial goals.

Hypergraph Analysis

Hypergraph Analysis is a branch of mathematics and computer science that extends the concept of traditional graphs to hypergraphs, where edges can connect more than two vertices. In a hypergraph, an edge, called a hyperedge, can link any number of vertices, making it particularly useful for modeling complex relationships in various fields such as social networks, biology, and computer science.

The analysis of hypergraphs involves exploring properties such as connectivity, clustering, and community structures, which can reveal insightful patterns and relationships within the data. Techniques used in hypergraph analysis include spectral methods, random walks, and partitioning algorithms, which help in understanding the structure and dynamics of the hypergraph. Furthermore, hypergraph-based approaches can enhance machine learning algorithms by providing richer representations of data, thus improving predictive performance.

Key applications of hypergraph analysis include:

  • Recommendation systems
  • Biological network modeling
  • Data mining and clustering

These applications demonstrate the versatility and power of hypergraphs in tackling complex problems that cannot be adequately represented by traditional graph structures.