StudentsEducators

Fiber Bragg Grating Sensors

Fiber Bragg Grating (FBG) sensors are advanced optical devices that utilize the principles of light reflection and wavelength filtering. They consist of a periodic variation in the refractive index of an optical fiber, which reflects specific wavelengths of light while allowing others to pass through. When external factors such as temperature or pressure change, the grating period alters, leading to a shift in the reflected wavelength. This shift can be quantitatively measured to monitor various physical parameters, making FBG sensors valuable in applications such as structural health monitoring and medical diagnostics. Their high sensitivity, small size, and resistance to electromagnetic interference make them ideal for use in harsh environments. Overall, FBG sensors provide an effective and reliable means of measuring changes in physical conditions through optical means.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Phillips Curve

The Phillips Curve represents an economic concept that illustrates the inverse relationship between the rate of inflation and the rate of unemployment within an economy. Originally formulated by A.W. Phillips in 1958, the curve suggests that when unemployment is low, inflation tends to rise, and conversely, when unemployment is high, inflation tends to decrease. This relationship can be expressed mathematically as:

π=πe−β(U−Un)\pi = \pi^e - \beta (U - U^n)π=πe−β(U−Un)

where:

  • π\piπ is the inflation rate,
  • πe\pi^eπe is the expected inflation rate,
  • UUU is the actual unemployment rate,
  • UnU^nUn is the natural rate of unemployment,
  • and β\betaβ is a positive constant.

However, the validity of the Phillips Curve has been debated, especially during periods of stagflation, where high inflation and high unemployment occurred simultaneously. Over time, economists have adjusted the model to include factors such as expectations and supply shocks, leading to the development of the New Keynesian Phillips Curve, which incorporates expectations about future inflation.

Brayton Reheating

Brayton Reheating ist ein Verfahren zur Verbesserung der Effizienz von Gasturbinenkraftwerken, das durch die Wiedererwärmung der Arbeitsflüssigkeit, typischerweise Luft, nach der ersten Expansion in der Turbine erreicht wird. Der Prozess besteht darin, die expandierte Luft erneut durch einen Wärmetauscher zu leiten, wo sie durch die Abgase der Turbine oder eine externe Wärmequelle aufgeheizt wird. Dies führt zu einer Erhöhung der Temperatur und damit zu einer höheren Energieausbeute, wenn die Luft erneut komprimiert und durch die Turbine geleitet wird.

Die Effizienzsteigerung kann durch die Formel für den thermischen Wirkungsgrad eines Brayton-Zyklus dargestellt werden:

η=1−TminTmax\eta = 1 - \frac{T_{min}}{T_{max}}η=1−Tmax​Tmin​​

wobei TminT_{min}Tmin​ die minimale und TmaxT_{max}Tmax​ die maximale Temperatur im Zyklus ist. Durch das Reheating wird TmaxT_{max}Tmax​ effektiv erhöht, was zu einem verbesserten Wirkungsgrad führt. Dieses Verfahren ist besonders nützlich in Anwendungen, wo hohe Leistung und Effizienz gefordert sind, wie in der Luftfahrt oder in großen Kraftwerken.

Hilbert Basis

A Hilbert Basis refers to a fundamental concept in algebra, particularly in the context of rings and modules. Specifically, it pertains to the property of Noetherian rings, where every ideal in such a ring can be generated by a finite set of elements. This property indicates that any ideal can be represented as a linear combination of a finite number of generators. In mathematical terms, a ring RRR is called Noetherian if every ascending chain of ideals stabilizes, which implies that every ideal III can be expressed as:

I=(a1,a2,…,an)I = (a_1, a_2, \ldots, a_n)I=(a1​,a2​,…,an​)

for some a1,a2,…,an∈Ra_1, a_2, \ldots, a_n \in Ra1​,a2​,…,an​∈R. The significance of Hilbert Basis Theorem lies in its application across various fields such as algebraic geometry and commutative algebra, providing a foundation for discussing the structure of algebraic varieties and modules over rings.

Graphene Nanoribbon Transport Properties

Graphene nanoribbons (GNRs) are narrow strips of graphene that exhibit unique electronic properties due to their one-dimensional structure. The transport properties of GNRs are significantly influenced by their width and edge configuration (zigzag or armchair). For instance, zigzag GNRs can exhibit metallic behavior, while armchair GNRs can be either metallic or semiconducting depending on their width.

The transport phenomena in GNRs can be described using the Landauer-Büttiker formalism, where the conductance GGG is related to the transmission probability TTT of carriers through the ribbon:

G=2e2hTG = \frac{2e^2}{h} TG=h2e2​T

where eee is the elementary charge and hhh is Planck's constant. Additionally, factors such as temperature, impurity scattering, and quantum confinement effects play crucial roles in determining the overall conductivity and mobility of charge carriers in these materials. As a result, GNRs are considered promising materials for future nanoelectronics due to their tunable electronic properties and high carrier mobility.

String Theory Dimensions

String theory proposes that the fundamental building blocks of the universe are not point-like particles but rather one-dimensional strings that vibrate at different frequencies. These strings exist in a space that comprises more than the four observable dimensions (three spatial dimensions and one time dimension). In fact, string theory suggests that there are up to ten or eleven dimensions. Most of these extra dimensions are compactified, meaning they are curled up in such a way that they are not easily observable at macroscopic scales. The properties of these additional dimensions influence the physical characteristics of particles, such as their mass and charge, leading to a rich tapestry of possible physical phenomena. Mathematically, the extra dimensions can be represented in various configurations, which can be complex and involve advanced geometry, such as Calabi-Yau manifolds.

Diseconomies Scale

Diseconomies of scale occur when a company or organization grows so large that the costs per unit increase, rather than decrease. This phenomenon can arise due to several factors, including inefficient management, communication breakdowns, and overly complex processes. As a firm expands, it may face challenges such as decreased employee morale, increased bureaucracy, and difficulties in maintaining quality control, all of which can lead to higher average costs. Mathematically, this can be represented as follows:

Average Cost=Total CostQuantity Produced\text{Average Cost} = \frac{\text{Total Cost}}{\text{Quantity Produced}}Average Cost=Quantity ProducedTotal Cost​

When total costs rise faster than output increases, the average cost per unit increases, demonstrating diseconomies of scale. It is crucial for businesses to identify the tipping point where growth starts to lead to increased costs, as this can significantly impact profitability and competitiveness.