StudentsEducators

Lstm Gates

LSTM (Long Short-Term Memory) networks are a special type of recurrent neural network (RNN) designed to learn long-term dependencies in sequential data. LSTM gates are crucial components that control the flow of information within the network. There are three primary gates in an LSTM cell:

  1. The Forget Gate: This gate determines which information from the cell state should be discarded. It uses a sigmoid activation function to output values between 0 and 1, where 0 means "completely forget" and 1 means "completely retain." Mathematically, it can be expressed as:
ft=σ(Wf⋅[ht−1,xt]+bf) f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)ft​=σ(Wf​⋅[ht−1​,xt​]+bf​)
  1. The Input Gate: This gate decides which new information should be added to the cell state. It also uses a sigmoid function to control the input and a tanh function to create a vector of new candidate values. Its formulation is:
it=σ(Wi⋅[ht−1,xt]+bi) i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)it​=σ(Wi​⋅[ht−1​,xt​]+bi​) C~t=tanh⁡(WC⋅[ht−1,xt]+bC) \tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)C~t​=tanh(WC​⋅[ht−1​,xt​]+bC​)
  1. The Output Gate: This gate determines what the next hidden state should be (i

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Dirac Equation Solutions

The Dirac equation, formulated by Paul Dirac in 1928, is a fundamental equation in quantum mechanics that describes the behavior of fermions, such as electrons. It successfully merges quantum mechanics and special relativity, providing a framework for understanding particles with spin-12\frac{1}{2}21​. The solutions to the Dirac equation reveal the existence of antiparticles, predicting that for every particle, there exists a corresponding antiparticle with the same mass but opposite charge.

Mathematically, the Dirac equation can be expressed as:

(iγμ∂μ−m)ψ=0(i \gamma^\mu \partial_\mu - m) \psi = 0(iγμ∂μ​−m)ψ=0

where γμ\gamma^\muγμ are the gamma matrices, ∂μ\partial_\mu∂μ​ represents the four-gradient, mmm is the mass of the particle, and ψ\psiψ is the wave function. The solutions can be categorized into positive-energy and negative-energy states, leading to profound implications in quantum field theory and the development of the Standard Model of particle physics.

Stark Effect

The Stark Effect refers to the phenomenon where the energy levels of atoms or molecules are shifted and split in the presence of an external electric field. This effect is a result of the interaction between the electric field and the dipole moments of the atoms or molecules, leading to a change in their quantum states. The Stark Effect can be classified into two main types: the normal Stark effect, which occurs in systems with non-degenerate energy levels, and the anomalous Stark effect, which occurs in systems with degenerate energy levels.

Mathematically, the energy shift ΔE\Delta EΔE can be expressed as:

ΔE=−d⃗⋅E⃗\Delta E = -\vec{d} \cdot \vec{E}ΔE=−d⋅E

where d⃗\vec{d}d is the dipole moment vector and E⃗\vec{E}E is the electric field vector. This phenomenon has significant implications in various fields such as spectroscopy, quantum mechanics, and atomic physics, as it allows for the precise measurement of electric fields and the study of atomic structure.

String Theory Dimensions

String theory proposes that the fundamental building blocks of the universe are not point-like particles but rather one-dimensional strings that vibrate at different frequencies. These strings exist in a space that comprises more than the four observable dimensions (three spatial dimensions and one time dimension). In fact, string theory suggests that there are up to ten or eleven dimensions. Most of these extra dimensions are compactified, meaning they are curled up in such a way that they are not easily observable at macroscopic scales. The properties of these additional dimensions influence the physical characteristics of particles, such as their mass and charge, leading to a rich tapestry of possible physical phenomena. Mathematically, the extra dimensions can be represented in various configurations, which can be complex and involve advanced geometry, such as Calabi-Yau manifolds.

Minimax Search Algorithm

The Minimax Search Algorithm is a decision-making algorithm used primarily in two-player games, such as chess or tic-tac-toe. Its purpose is to minimize the possible loss for a worst-case scenario while maximizing the potential gain. The algorithm works by constructing a game tree where each node represents a game state, and it alternates between minimizing and maximizing layers, depending on whose turn it is.

In essence, the player (maximizer) aims to choose the move that provides the maximum possible score, while the opponent (minimizer) aims to select moves that minimize the player's score. The algorithm evaluates the game states at the leaf nodes of the tree and propagates these values upward, ultimately leading to the decision that results in the optimal strategy for the player. The Minimax algorithm can be implemented recursively and often incorporates techniques such as alpha-beta pruning to enhance efficiency by eliminating branches that do not need to be evaluated.

Pid Controller

A PID controller (Proportional-Integral-Derivative controller) is a widely used control loop feedback mechanism in industrial control systems. It aims to continuously calculate an error value as the difference between a desired setpoint and a measured process variable, and it applies a correction based on three distinct parameters: the proportional, integral, and derivative terms.

  • The proportional term produces an output that is proportional to the current error value, providing a control output that is directly related to the size of the error.
  • The integral term accounts for the accumulated past errors, thereby eliminating residual steady-state errors that occur with a pure proportional controller.
  • The derivative term predicts future errors based on the rate of change of the error, providing a damping effect that helps to stabilize the system and reduce overshoot.

Mathematically, the output u(t)u(t)u(t) of a PID controller can be expressed as:

u(t)=Kpe(t)+Ki∫0te(τ)dτ+Kdde(t)dtu(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}u(t)=Kp​e(t)+Ki​∫0t​e(τ)dτ+Kd​dtde(t)​

where KpK_pKp​, KiK_iKi​, and KdK_dKd​ are the tuning parameters for the proportional, integral, and derivative terms, respectively, and e(t)e(t)e(t) is the error at time ttt. By appropriately tuning these parameters, a PID controller can achieve a

Karger’S Min-Cut Theorem

Karger's Min-Cut Theorem states that in a connected undirected graph, the minimum cut (the smallest number of edges that, if removed, would disconnect the graph) can be found using a randomized algorithm. This algorithm works by repeatedly contracting edges until only two vertices remain, which effectively identifies a cut. The key insight is that the probability of finding the minimum cut increases with the number of repetitions of the algorithm. Specifically, if the graph has kkk minimum cuts, the probability of finding one of them after O(n2log⁡n)O(n^2 \log n)O(n2logn) runs is at least 1−1n21 - \frac{1}{n^2}1−n21​, where nnn is the number of vertices in the graph. This theorem not only provides a method for finding minimum cuts but also highlights the power of randomization in algorithm design.