A Markov Chain Steady State refers to a situation in a Markov chain where the probabilities of being in each state stabilize over time. In this state, the system's behavior becomes predictable, as the distribution of states no longer changes with further transitions. Mathematically, if we denote the state probabilities at time as , the steady state satisfies the equation:
where is the transition matrix of the Markov chain. This equation indicates that the distribution of states in the steady state is invariant to the application of the transition probabilities. In practical terms, reaching the steady state implies that the long-term behavior of the system can be analyzed without concern for its initial state, making it a valuable concept in various fields such as economics, genetics, and queueing theory.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.