StudentsEducators

Nyquist Stability Criterion

The Nyquist Stability Criterion is a graphical method used in control theory to assess the stability of a linear time-invariant (LTI) system based on its open-loop frequency response. This criterion involves plotting the Nyquist plot, which is a parametric plot of the complex function G(jω)G(j\omega)G(jω) over a range of frequencies ω\omegaω. The key idea is to count the number of encirclements of the point −1+0j-1 + 0j−1+0j in the complex plane, which is related to the number of poles of the closed-loop transfer function that are in the right half of the complex plane.

The criterion states that if the number of counterclockwise encirclements of −1-1−1 (denoted as NNN) is equal to the number of poles of the open-loop transfer function G(s)G(s)G(s) in the right half-plane (denoted as PPP), the closed-loop system is stable. Mathematically, this relationship can be expressed as:

N=PN = PN=P

In summary, the Nyquist Stability Criterion provides a powerful tool for engineers to determine the stability of feedback systems without needing to derive the characteristic equation explicitly.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Mosfet Switching

MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) switching refers to the operation of MOSFETs as electronic switches in various circuits. In a MOSFET, switching occurs when a voltage is applied to the gate terminal, controlling the flow of current between the drain and source terminals. When the gate voltage exceeds a certain threshold, the MOSFET enters a 'ON' state, allowing current to flow; conversely, when the gate voltage is below this threshold, the MOSFET is in the 'OFF' state, effectively blocking current. This ability to rapidly switch between states makes MOSFETs ideal for applications in power electronics, such as inverters, converters, and amplifiers.

Key advantages of MOSFET switching include:

  • High Efficiency: Minimal power loss during operation.
  • Fast Switching Speed: Enables high-frequency operation.
  • Voltage Control: Allows for precise control of output current.

In summary, MOSFET switching plays a crucial role in modern electronic devices, enhancing performance and efficiency in a wide range of applications.

Bessel Functions

Bessel functions are a family of solutions to Bessel's differential equation, which commonly arises in problems with cylindrical symmetry, such as heat conduction, vibrations, and wave propagation. These functions are named after the mathematician Friedrich Bessel and can be expressed as Bessel functions of the first kind Jn(x)J_n(x)Jn​(x) and Bessel functions of the second kind Yn(x)Y_n(x)Yn​(x), where nnn is the order of the function. The first kind is finite at the origin for non-negative integers, while the second kind diverges at the origin.

Bessel functions possess unique properties, including orthogonality and recurrence relations, making them valuable in various fields such as physics and engineering. They are often represented graphically, showcasing oscillatory behavior that resembles sine and cosine functions but with a decaying amplitude. The general form of the Bessel function of the first kind is given by the series expansion:

Jn(x)=∑k=0∞(−1)kk!Γ(n+k+1)(x2)n+2kJ_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(n+k+1)} \left( \frac{x}{2} \right)^{n+2k}Jn​(x)=k=0∑∞​k!Γ(n+k+1)(−1)k​(2x​)n+2k

where Γ\GammaΓ is the gamma function.

Single-Cell Rna Sequencing

Single-Cell RNA Sequencing (scRNA-seq) is a groundbreaking technique that enables the analysis of gene expression at the individual cell level. Unlike traditional RNA sequencing, which averages the gene expression across a population of cells, scRNA-seq allows researchers to capture the unique transcriptomic profile of each cell. This is particularly important for understanding cellular heterogeneity in complex tissues, discovering rare cell types, and investigating cellular responses to various stimuli.

The process typically involves isolating single cells from a sample, converting their RNA into complementary DNA (cDNA), and then sequencing this cDNA to quantify the expression levels of genes. The resulting data can be analyzed using various bioinformatics tools to identify distinct cell populations, infer cellular states, and map developmental trajectories. Overall, scRNA-seq has revolutionized our approach to studying cellular function and diversity in health and disease.

Surface Plasmon Resonance Tuning

Surface Plasmon Resonance (SPR) tuning refers to the adjustment of the resonance conditions of surface plasmons, which are coherent oscillations of free electrons at the interface between a metal and a dielectric material. This phenomenon is highly sensitive to changes in the local environment, making it a powerful tool for biosensing and material characterization. The tuning can be achieved by modifying various parameters such as the metal film thickness, the incident angle of light, and the dielectric properties of the surrounding medium. For example, changing the refractive index of the dielectric layer can shift the resonance wavelength, enabling detection of biomolecular interactions with high sensitivity. Mathematically, the resonance condition can be described using the equation:

λres=2πcksp\lambda_{res} = \frac{2\pi c}{k_{sp}}λres​=ksp​2πc​

where λres\lambda_{res}λres​ is the resonant wavelength, ccc is the speed of light, and kspk_{sp}ksp​ is the wave vector of the surface plasmon. Overall, SPR tuning is essential for enhancing the performance of sensors and improving the specificity of molecular detection.

Tcr-Pmhc Binding Affinity

Tcr-Pmhc binding affinity refers to the strength of the interaction between T cell receptors (TCRs) and peptide-major histocompatibility complexes (pMHCs). This interaction is crucial for the immune response, as it dictates how effectively T cells can recognize and respond to pathogens. The binding affinity is quantified by the equilibrium dissociation constant (KdK_dKd​), where a lower KdK_dKd​ value indicates a stronger binding affinity. Factors influencing this affinity include the specific amino acid sequences of the peptide and TCR, the structural conformation of the pMHC, and the presence of additional co-receptors. Understanding Tcr-Pmhc binding affinity is essential for designing effective immunotherapies and vaccines, as it directly impacts T cell activation and proliferation.

Möbius Transformation

A Möbius transformation is a function that maps complex numbers to complex numbers via a specific formula. It is typically expressed in the form:

f(z)=az+bcz+df(z) = \frac{az + b}{cz + d}f(z)=cz+daz+b​

where a,b,c,a, b, c,a,b,c, and ddd are complex numbers and ad−bc≠0ad - bc \neq 0ad−bc=0. Möbius transformations are significant in various fields such as complex analysis, geometry, and number theory because they preserve angles and the general structure of circles and lines in the complex plane. They can be thought of as transformations that perform operations like rotation, translation, scaling, and inversion. Moreover, the set of all Möbius transformations forms a group under composition, making them a powerful tool for studying symmetrical properties of geometric figures and functions.