StudentsEducators

Phase-Shift Full-Bridge Converter

A Phase-Shift Full-Bridge Converter (PSFB) is an advanced DC-DC converter topology that utilizes four switches arranged in a full-bridge configuration to convert a DC input voltage to a lower or higher DC output voltage. The key feature of this converter is its ability to control the output voltage and improve efficiency by utilizing phase-shifting techniques among the switch signals. This phase shift allows for zero-voltage switching (ZVS) of the switches, thereby minimizing switching losses and improving thermal performance.

In operation, the switches are activated in pairs to create alternating voltage across the transformer primary, where the phase difference between the pairs is adjusted to control the output power. The relationship between the input voltage VinV_{in}Vin​, the output voltage VoutV_{out}Vout​, and the turns ratio nnn of the transformer can be expressed as:

Vout=Vinn⋅DV_{out} = \frac{V_{in}}{n} \cdot DVout​=nVin​​⋅D

where DDD is the duty cycle determined by the phase shift. This converter is particularly beneficial in applications requiring high efficiency, such as renewable energy systems and electric vehicles, due to its ability to handle higher power levels with reduced heat generation.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Banach Space

A Banach space is a complete normed vector space, which means it is a vector space equipped with a norm that allows for the measurement of vector lengths and distances. Formally, if VVV is a vector space over the field of real or complex numbers, and if there is a function ∣∣⋅∣∣:V→R|| \cdot || : V \to \mathbb{R}∣∣⋅∣∣:V→R satisfying the following properties for all x,y∈Vx, y \in Vx,y∈V and all scalars α\alphaα:

  1. Non-negativity: ∣∣x∣∣≥0||x|| \geq 0∣∣x∣∣≥0 and ∣∣x∣∣=0||x|| = 0∣∣x∣∣=0 if and only if x=0x = 0x=0.
  2. Scalar multiplication: ∣∣αx∣∣=∣α∣⋅∣∣x∣∣||\alpha x|| = |\alpha| \cdot ||x||∣∣αx∣∣=∣α∣⋅∣∣x∣∣.
  3. Triangle inequality: ∣∣x+y∣∣≤∣∣x∣∣+∣∣y∣∣||x + y|| \leq ||x|| + ||y||∣∣x+y∣∣≤∣∣x∣∣+∣∣y∣∣.

Then, VVV is a normed space. A Banach space additionally requires that every Cauchy sequence in VVV converges to a limit that is also within VVV. This completeness property is crucial for many areas of functional analysis and ensures that various mathematical operations can be performed without leaving the space. Examples of Banach spaces include Rn\mathbb{R}^nRn with the usual norm, LpL^pLp spaces, and the space

Floyd-Warshall

The Floyd-Warshall algorithm is a dynamic programming technique used to find the shortest paths between all pairs of vertices in a weighted graph. It works on both directed and undirected graphs and can handle graphs with negative weights, but it does not work with graphs that contain negative cycles. The algorithm iteratively updates a distance matrix DDD, where D[i][j]D[i][j]D[i][j] represents the shortest distance from vertex iii to vertex jjj. The core of the algorithm is encapsulated in the following formula:

D[i][j]=min⁡(D[i][j],D[i][k]+D[k][j])D[i][j] = \min(D[i][j], D[i][k] + D[k][j])D[i][j]=min(D[i][j],D[i][k]+D[k][j])

for all vertices kkk. This process is repeated for each vertex kkk as an intermediate point, ultimately ensuring that the shortest paths between all pairs of vertices are found. The time complexity of the Floyd-Warshall algorithm is O(V3)O(V^3)O(V3), where VVV is the number of vertices in the graph, making it less efficient for very large graphs compared to other shortest-path algorithms.

Prisoner Dilemma

The Prisoner Dilemma is a fundamental concept in game theory that illustrates how two individuals might not cooperate, even if it appears that it is in their best interest to do so. The scenario typically involves two prisoners who are arrested and interrogated separately. Each prisoner has the option to either cooperate with the other by remaining silent or defect by betraying the other.

The outcomes are structured as follows:

  • If both prisoners cooperate and remain silent, they each serve a short sentence, say 1 year.
  • If one defects while the other cooperates, the defector goes free, while the cooperator serves a long sentence, say 5 years.
  • If both defect, they each serve a moderate sentence, say 3 years.

The dilemma arises because, from the perspective of each prisoner, betraying the other offers a better personal outcome regardless of what the other does. Thus, the rational choice leads both to defect, resulting in a worse overall outcome (3 years each) than if they had both cooperated (1 year each). This paradox highlights the conflict between individual rationality and collective benefit, making it a key concept in understanding cooperation and competition in various fields, including economics, politics, and sociology.

Thermal Barrier Coatings

Thermal Barrier Coatings (TBCs) are advanced materials engineered to protect components from extreme temperatures and thermal fatigue, particularly in high-performance applications like gas turbines and aerospace engines. These coatings are typically composed of a ceramic material, such as zirconia, which exhibits low thermal conductivity, thereby insulating the underlying metal substrate from heat. The effectiveness of TBCs can be quantified by their thermal conductivity, often expressed in units of W/m·K, which should be significantly lower than that of the base material.

TBCs not only enhance the durability and performance of components by minimizing thermal stress but also contribute to improved fuel efficiency and reduced emissions in engines. The application process usually involves techniques like plasma spraying or electron beam physical vapor deposition (EB-PVD), which create a porous structure that can withstand thermal cycling and mechanical stresses. Overall, TBCs are crucial for extending the operational life of high-temperature components in various industries.

Riemann-Lebesgue Lemma

The Riemann-Lebesgue Lemma is a fundamental result in analysis that describes the behavior of Fourier coefficients of integrable functions. Specifically, it states that if fff is a Lebesgue-integrable function on the interval [a,b][a, b][a,b], then the Fourier coefficients cnc_ncn​ defined by

cn=1b−a∫abf(x)e−inx dxc_n = \frac{1}{b-a} \int_a^b f(x) e^{-i n x} \, dxcn​=b−a1​∫ab​f(x)e−inxdx

tend to zero as nnn approaches infinity. This means that as the frequency of the oscillating function e−inxe^{-i n x}e−inx increases, the average value of fff weighted by these oscillations diminishes.

In essence, the lemma implies that the contributions of high-frequency oscillations to the overall integral diminish, reinforcing the idea that "oscillatory integrals average out" for integrable functions. This result is crucial in Fourier analysis and has implications for signal processing, where it helps in understanding how signals can be represented and approximated.

Tariff Impact

The term Tariff Impact refers to the economic effects that tariffs, or taxes imposed on imported goods, have on various stakeholders, including consumers, businesses, and governments. When a tariff is implemented, it generally leads to an increase in the price of imported products, which can result in higher costs for consumers. This price increase may encourage consumers to switch to domestically produced goods, thereby potentially benefiting local industries. However, it can also lead to retaliatory tariffs from other countries, which can affect exports and disrupt global trade dynamics.

Mathematically, the impact of a tariff can be represented as:

Price Increase=Tariff Rate×Cost of Imported Good\text{Price Increase} = \text{Tariff Rate} \times \text{Cost of Imported Good}Price Increase=Tariff Rate×Cost of Imported Good

In summary, while tariffs can protect domestic industries, they can also lead to higher prices and reduced choices for consumers, as well as potential negative repercussions in international trade relations.