StudentsEducators

Planck’s Law

Planck's Law describes the electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature. It establishes that the intensity of radiation emitted at a specific wavelength is determined by the temperature of the body, following the formula:

I(λ,T)=2hc2λ5⋅1ehcλkT−1I(\lambda, T) = \frac{2hc^2}{\lambda^5} \cdot \frac{1}{e^{\frac{hc}{\lambda kT}} - 1}I(λ,T)=λ52hc2​⋅eλkThc​−11​

where:

  • I(λ,T)I(\lambda, T)I(λ,T) is the spectral radiance,
  • hhh is Planck's constant,
  • ccc is the speed of light,
  • λ\lambdaλ is the wavelength,
  • kkk is the Boltzmann constant,
  • TTT is the absolute temperature in Kelvin.

This law is pivotal in quantum mechanics as it introduced the concept of quantized energy levels, leading to the development of quantum theory. Additionally, it explains phenomena such as why hotter objects emit more radiation at shorter wavelengths, contributing to our understanding of thermal radiation and the distribution of energy across different wavelengths.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Stochastic Games

Stochastic games are a class of mathematical models that extend the concept of traditional game theory by incorporating randomness and dynamic interaction between players. In these games, the outcome not only depends on the players' strategies but also on probabilistic events that can influence the state of the game. Each player aims to maximize their expected utility over time, taking into account both their own actions and the potential actions of other players.

A typical stochastic game can be represented as a series of states, where at each state, players choose actions that lead to transitions based on certain probabilities. The game's value may be determined using concepts such as Markov decision processes and may involve solving complex optimization problems. These games are particularly relevant in areas such as economics, ecology, and robotics, where uncertainty and strategic decision-making are central to the problem at hand.

Prospect Theory Reference Points

Prospect Theory, developed by Daniel Kahneman and Amos Tversky, introduces the concept of reference points to explain how individuals evaluate potential gains and losses. A reference point is essentially a baseline or a status quo that people use to judge outcomes; they perceive outcomes as gains or losses relative to this point rather than in absolute terms. For instance, if an investor expects a return of 5% on an investment and receives 7%, they perceive this as a gain of 2%. Conversely, if they receive only 3%, it is viewed as a loss of 2%. This leads to the principle of loss aversion, where losses are felt more intensely than equivalent gains, often described by the ratio of approximately 2:1. Thus, the reference point significantly influences decision-making processes, as people tend to be risk-averse in the domain of gains and risk-seeking in the domain of losses.

Histone Modification Mapping

Histone Modification Mapping is a crucial technique in epigenetics that allows researchers to identify and characterize the various chemical modifications present on histone proteins. These modifications, such as methylation, acetylation, phosphorylation, and ubiquitination, play significant roles in regulating gene expression by altering chromatin structure and accessibility. The mapping process typically involves techniques like ChIP-Seq (Chromatin Immunoprecipitation followed by sequencing), which enables the precise localization of histone modifications across the genome. This information can help elucidate how specific modifications contribute to cellular processes, such as development, differentiation, and disease states, particularly in cancer research. Overall, understanding histone modifications is essential for unraveling the complexities of gene regulation and developing potential therapeutic strategies.

Fermat’S Theorem

Fermat's Theorem, auch bekannt als Fermats letzter Satz, besagt, dass es keine drei positiven ganzen Zahlen aaa, bbb und ccc gibt, die die Gleichung

an+bn=cna^n + b^n = c^nan+bn=cn

für einen ganzzahligen Exponenten n>2n > 2n>2 erfüllen. Pierre de Fermat formulierte diesen Satz im Jahr 1637 und hinterließ einen kurzen Hinweis, dass er einen "wunderbaren Beweis" für diese Aussage gefunden hatte, den er jedoch nicht aufschrieb. Der Satz blieb über 350 Jahre lang unbewiesen und wurde erst 1994 von dem Mathematiker Andrew Wiles bewiesen. Der Beweis nutzt komplexe Konzepte der modernen Zahlentheorie und elliptischen Kurven. Fermats letzter Satz ist nicht nur ein Meilenstein in der Mathematik, sondern hat auch bedeutende Auswirkungen auf das Verständnis von Zahlen und deren Beziehungen.

Hodge Decomposition

The Hodge Decomposition is a fundamental theorem in differential geometry and algebraic topology that provides a way to break down differential forms on a Riemannian manifold into orthogonal components. According to this theorem, any differential form can be uniquely expressed as the sum of three parts:

  1. Exact forms: These are forms that can be expressed as the exterior derivative of another form.
  2. Co-exact forms: These are forms that arise from the codifferential operator applied to some other form, essentially representing "divergence" in a sense.
  3. Harmonic forms: These forms are both exact and co-exact, meaning they represent the "middle ground" and are critical in understanding the topology of the manifold.

Mathematically, for a differential form ω\omegaω on a Riemannian manifold MMM, Hodge's theorem states that:

ω=dη+δϕ+ψ\omega = d\eta + \delta\phi + \psiω=dη+δϕ+ψ

where ddd is the exterior derivative, δ\deltaδ is the codifferential, and η\etaη, ϕ\phiϕ, and ψ\psiψ are differential forms representing the exact, co-exact, and harmonic components, respectively. This decomposition is crucial for various applications in mathematical physics, such as in the study of electromagnetic fields and fluid dynamics.

Supersonic Nozzles

Supersonic nozzles are specialized devices that accelerate the flow of gases to supersonic speeds, which are speeds greater than the speed of sound in the surrounding medium. These nozzles operate based on the principles of compressible fluid dynamics, particularly utilizing the converging-diverging design. In a supersonic nozzle, the flow accelerates as it passes through a converging section, reaches the speed of sound at the throat (the narrowest part), and then continues to expand in a diverging section, resulting in supersonic speeds. The key equations governing this behavior involve the conservation of mass, momentum, and energy, which can be expressed mathematically as:

d(ρAv)dx=0\frac{d(\rho A v)}{dx} = 0dxd(ρAv)​=0

where ρ\rhoρ is the fluid density, AAA is the cross-sectional area, and vvv is the velocity of the fluid. Supersonic nozzles are critical in various applications, including rocket propulsion, jet engines, and wind tunnels, as they enable efficient thrust generation and control over high-speed flows.