StudentsEducators

Planck’s Law

Planck's Law describes the electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature. It establishes that the intensity of radiation emitted at a specific wavelength is determined by the temperature of the body, following the formula:

I(λ,T)=2hc2λ5⋅1ehcλkT−1I(\lambda, T) = \frac{2hc^2}{\lambda^5} \cdot \frac{1}{e^{\frac{hc}{\lambda kT}} - 1}I(λ,T)=λ52hc2​⋅eλkThc​−11​

where:

  • I(λ,T)I(\lambda, T)I(λ,T) is the spectral radiance,
  • hhh is Planck's constant,
  • ccc is the speed of light,
  • λ\lambdaλ is the wavelength,
  • kkk is the Boltzmann constant,
  • TTT is the absolute temperature in Kelvin.

This law is pivotal in quantum mechanics as it introduced the concept of quantized energy levels, leading to the development of quantum theory. Additionally, it explains phenomena such as why hotter objects emit more radiation at shorter wavelengths, contributing to our understanding of thermal radiation and the distribution of energy across different wavelengths.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Epigenetic Reprogramming

Epigenetic reprogramming refers to the process by which the epigenetic landscape of a cell is altered, leading to changes in gene expression without modifying the underlying DNA sequence. This phenomenon is crucial during development, stem cell differentiation, and in response to environmental stimuli. Key mechanisms of epigenetic reprogramming include DNA methylation, histone modification, and the action of non-coding RNAs. These changes can be stable and heritable, allowing for cellular plasticity and adaptation. For instance, induced pluripotent stem cells (iPSCs) are created through reprogramming somatic cells, effectively reverting them to a pluripotent state capable of differentiating into various cell types. Understanding epigenetic reprogramming holds significant potential for therapeutic applications, including regenerative medicine and cancer treatment.

Persistent Data Structures

Persistent Data Structures are data structures that preserve previous versions of themselves when they are modified. This means that any operation that alters the structure—like adding, removing, or changing elements—creates a new version while keeping the old version intact. They are particularly useful in functional programming languages where immutability is a core concept.

The main advantage of persistent data structures is that they enable easy access to historical states, which can simplify tasks such as undo operations in applications or maintaining different versions of data without the overhead of making complete copies. Common examples include persistent trees (like persistent AVL or Red-Black trees) and persistent lists. The performance implications often include trade-offs, as these structures may require more memory and computational resources compared to their non-persistent counterparts.

Autonomous Vehicle Algorithms

Autonomous vehicle algorithms are sophisticated computational methods that enable self-driving cars to navigate and operate without human intervention. These algorithms integrate a variety of technologies, including machine learning, computer vision, and sensor fusion, to interpret data from the vehicle's surroundings. By processing information from LiDAR, radar, and cameras, these algorithms create a detailed model of the environment, allowing the vehicle to identify obstacles, lane markings, and traffic signals.

Key components of these algorithms include:

  • Perception: Understanding the vehicle's environment by detecting and classifying objects.
  • Localization: Determining the vehicle's precise location using GPS and other sensor data.
  • Path Planning: Calculating the optimal route while considering dynamic elements like other vehicles and pedestrians.
  • Control: Executing driving maneuvers, such as steering and acceleration, based on the planned path.

Through continuous learning and adaptation, these algorithms improve safety and efficiency, paving the way for a future of autonomous transportation.

Kosaraju’S Algorithm

Kosaraju's Algorithm is an efficient method for finding strongly connected components (SCCs) in a directed graph. The algorithm operates in two main passes using Depth-First Search (DFS). In the first pass, we perform DFS on the original graph to determine the finish order of each vertex, which helps in identifying the order of processing in the next step. The second pass involves reversing the graph's edges and conducting DFS based on the vertices' finish order obtained from the first pass. Each DFS call in this second pass identifies one strongly connected component. The overall time complexity of Kosaraju's Algorithm is O(V+E)O(V + E)O(V+E), where VVV is the number of vertices and EEE is the number of edges, making it very efficient for large graphs.

Agency Cost

Agency cost refers to the expenses incurred to resolve conflicts of interest between stakeholders in a business, primarily between principals (owners or shareholders) and agents (management). These costs arise when the agent does not act in the best interest of the principal, which can lead to inefficiencies and loss of value. Agency costs can manifest in various forms, including:

  • Monitoring Costs: Expenses related to overseeing the agent's performance, such as audits and performance evaluations.
  • Bonding Costs: Costs incurred by the agent to assure the principal that they will act in the principal's best interest, such as performance-based compensation structures.
  • Residual Loss: The reduction in welfare experienced by the principal due to the divergence of interests between the principal and agent, even after monitoring and bonding efforts have been implemented.

Ultimately, agency costs can affect the overall efficiency and profitability of a business, making it crucial for organizations to implement effective governance mechanisms.

Lebesgue Integral

The Lebesgue Integral is a fundamental concept in mathematical analysis that extends the notion of integration beyond the traditional Riemann integral. Unlike the Riemann integral, which partitions the domain of a function into intervals, the Lebesgue integral focuses on partitioning the range of the function. This approach allows for the integration of a broader class of functions, especially those that are discontinuous or defined on complex sets.

In the Lebesgue approach, we define the integral of a measurable function f:R→Rf: \mathbb{R} \rightarrow \mathbb{R}f:R→R with respect to a measure μ\muμ as:

∫f dμ=∫−∞∞f(x) dμ(x).\int f \, d\mu = \int_{-\infty}^{\infty} f(x) \, d\mu(x).∫fdμ=∫−∞∞​f(x)dμ(x).

This definition leads to powerful results, such as the Dominated Convergence Theorem, which facilitates the interchange of limit and integral operations. The Lebesgue integral is particularly important in probability theory, functional analysis, and other fields of applied mathematics where more complex functions arise.