The Quantum Decoherence Process refers to the phenomenon where a quantum system loses its quantum coherence, transitioning from a superposition of states to a classical mixture of states. This process occurs when a quantum system interacts with its environment, leading to the entanglement of the system with external degrees of freedom. As a result, the quantum interference effects that characterize superposition diminish, and the system appears to adopt definite classical properties.
Mathematically, decoherence can be described by the density matrix formalism, where the initial pure state becomes mixed over time due to an interaction with the environment, resulting in the density matrix that can be expressed as:
where are probabilities of the system being in particular states . Ultimately, decoherence helps to explain the transition from quantum mechanics to classical behavior, providing insight into the measurement problem and the emergence of classicality in macroscopic systems.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.