Quantum entanglement entropy is a measure of the amount of entanglement between two subsystems in a quantum system. It quantifies how much information about one subsystem is lost when the other subsystem is ignored. Mathematically, this is often expressed using the von Neumann entropy, defined as:
where is the reduced density matrix of one of the subsystems. In the context of entangled states, this entropy reveals that even when the total system is in a pure state, the individual subsystems can have a non-zero entropy, indicating the presence of entanglement. The higher the entanglement entropy, the stronger the entanglement between the subsystems, which plays a crucial role in various quantum phenomena, including quantum computing and quantum information theory.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.