The Rayleigh Criterion is a fundamental principle in optics that defines the limit of resolution for optical systems, such as telescopes and microscopes. It states that two point sources of light are considered to be just resolvable when the central maximum of the diffraction pattern of one source coincides with the first minimum of the diffraction pattern of the other. Mathematically, this can be expressed as:
where is the minimum angular separation between two point sources, is the wavelength of light, and is the diameter of the aperture (lens or mirror). The factor 1.22 arises from the circular aperture's diffraction pattern. This criterion is critical in various applications, including astronomy, where resolving distant celestial objects is essential, and in microscopy, where it determines the clarity of the observed specimens. Understanding the Rayleigh Criterion helps in designing optical instruments to achieve the desired resolution.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.