StudentsEducators

Schelling Model

The Schelling Model, developed by economist Thomas Schelling in the 1970s, is a foundational concept in understanding how individual preferences can lead to large-scale social phenomena, particularly in the context of segregation. The model illustrates that even a slight preference for neighbors of the same kind can result in significant segregation over time, despite individuals not necessarily wishing to be entirely separated from others.

In the simplest form of the model, individuals are represented on a grid, where each square can be occupied by a person of one type (e.g., color) or remain empty. Each person prefers to have a certain percentage of neighbors that are similar to them. If this preference is not met, individuals will move to a different location, leading to an evolving pattern of segregation. This model highlights the importance of self-organization in social systems and demonstrates how individual actions can unintentionally create collective outcomes, often counter to the initial intentions of the individuals involved.

The implications of the Schelling Model extend to various fields, including urban studies, economics, and sociology, emphasizing how personal choices can shape societal structures.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Superelasticity In Shape-Memory Alloys

Superelasticity is a remarkable phenomenon observed in shape-memory alloys (SMAs), which allows these materials to undergo significant strains without permanent deformation. This behavior is primarily due to a reversible phase transformation between the austenite and martensite phases, typically triggered by changes in temperature or stress. When an SMA is deformed above its austenite finish temperature, it can recover its original shape upon unloading, demonstrating a unique ability to return to its pre-deformed state.

Key features of superelasticity include:

  • High energy absorption: SMAs can absorb and release large amounts of energy, making them ideal for applications in seismic protection and shock absorbers.
  • Wide range of applications: These materials are utilized in various fields, including biomedical devices, robotics, and aerospace engineering.
  • Temperature dependence: The superelastic behavior is sensitive to the material's composition and the temperature, which influences the phase transformation characteristics.

In summary, superelasticity in shape-memory alloys combines mechanical flexibility with the ability to revert to a specific shape, enabling innovative solutions in engineering and technology.

Dc-Dc Buck-Boost Conversion

Dc-Dc Buck-Boost Conversion is a type of power conversion that allows a circuit to either step down (buck) or step up (boost) the input voltage to a desired output voltage level. This versatility is crucial in applications where the input voltage may vary above or below the required output voltage, such as in battery-powered devices. The buck-boost converter uses an inductor, a switch (usually a transistor), a diode, and a capacitor to regulate the output voltage.

The operation of a buck-boost converter can be described mathematically by the following relationship:

Vout=Vin⋅D1−DV_{out} = V_{in} \cdot \frac{D}{1-D}Vout​=Vin​⋅1−DD​

where VoutV_{out}Vout​ is the output voltage, VinV_{in}Vin​ is the input voltage, and DDD is the duty cycle of the switch, ranging from 0 to 1. This flexibility in voltage regulation makes buck-boost converters ideal for various applications, including renewable energy systems, electric vehicles, and portable electronics.

Cobb-Douglas

The Cobb-Douglas production function is a widely used mathematical model in economics that describes the relationship between two or more inputs (typically labor and capital) and the amount of output produced. It is represented by the formula:

Q=ALαKβQ = A L^\alpha K^\betaQ=ALαKβ

where:

  • QQQ is the total quantity of output,
  • AAA is a constant representing total factor productivity,
  • LLL is the quantity of labor,
  • KKK is the quantity of capital,
  • α\alphaα and β\betaβ are the output elasticities of labor and capital, respectively.

This function demonstrates how output changes in response to proportional changes in inputs, allowing economists to analyze returns to scale and the efficiency of resource use. Key features of the Cobb-Douglas function include constant returns to scale when α+β=1\alpha + \beta = 1α+β=1 and the property of diminishing marginal returns, suggesting that adding more of one input while keeping others constant will eventually yield smaller increases in output.

Cournot Oligopoly

The Cournot Oligopoly model describes a market structure in which a small number of firms compete by choosing quantities to produce, rather than prices. Each firm decides how much to produce with the assumption that the output levels of the other firms remain constant. This interdependence leads to a Nash Equilibrium, where no firm can benefit by changing its output level while the others keep theirs unchanged. In this setting, the total quantity produced in the market determines the market price, typically resulting in a price that is above marginal costs, allowing firms to earn positive economic profits. The model is named after the French economist Antoine Augustin Cournot, and it highlights the balance between competition and cooperation among firms in an oligopolistic market.

Heavy-Light Decomposition

Heavy-Light Decomposition is a technique used in graph theory, particularly for optimizing queries on trees. The central idea is to decompose a tree into a set of heavy and light edges, allowing efficient processing of path queries and updates. In this decomposition, edges are categorized based on their subtrees: if a subtree rooted at a child node has more nodes than its sibling, the edge connecting them is considered heavy; otherwise, it is light. This results in a structure where each path from the root to a leaf can be divided into a series of heavy edges followed by light edges, enabling efficient traversal and query execution.

By utilizing this decomposition, algorithms can achieve a time complexity of O(log⁡n)O(\log n)O(logn) for various operations, such as finding the least common ancestor or aggregating values along paths. Overall, Heavy-Light Decomposition is a powerful tool in competitive programming and algorithm design, particularly for problems related to tree structures.

Avl Tree Rotations

AVL Trees are a type of self-balancing binary search tree, where the heights of the two child subtrees of any node differ by at most one. When an insertion or deletion operation causes this balance to be violated, rotations are performed to restore it. There are four types of rotations used in AVL Trees:

  1. Right Rotation: This is applied when a node becomes unbalanced due to a left-heavy subtree. The right rotation involves making the left child the new root of the subtree and adjusting the pointers accordingly.

  2. Left Rotation: This is the opposite of the right rotation and is used when a node becomes unbalanced due to a right-heavy subtree. Here, the right child becomes the new root of the subtree.

  3. Left-Right Rotation: This is a double rotation that combines a left rotation followed by a right rotation. It is used when a left child has a right-heavy subtree.

  4. Right-Left Rotation: Another double rotation that combines a right rotation followed by a left rotation, which is applied when a right child has a left-heavy subtree.

These rotations help to maintain the balance factor, defined as the height difference between the left and right subtrees, ensuring efficient operations on the tree.