StudentsEducators

Stackelberg Equilibrium

The Stackelberg Equilibrium is a concept in game theory that describes a strategic interaction between firms in an oligopoly setting, where one firm (the leader) makes its production decision before the other firm (the follower). This sequential decision-making process allows the leader to optimize its output based on the expected reactions of the follower. In this equilibrium, the leader anticipates the follower's best response and chooses its output level accordingly, leading to a distinct outcome compared to simultaneous-move games.

Mathematically, if qLq_LqL​ represents the output of the leader and qFq_FqF​ represents the output of the follower, the follower's reaction function can be expressed as qF=R(qL)q_F = R(q_L)qF​=R(qL​), where RRR is the reaction function derived from the follower's profit maximization. The Stackelberg equilibrium occurs when the leader chooses qLq_LqL​ that maximizes its profit, taking into account the follower's reaction. This results in a unique equilibrium where both firms' outputs are determined, and typically, the leader enjoys a higher market share and profits compared to the follower.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Legendre Transform

The Legendre Transform is a mathematical operation that transforms a function into another function, often used to switch between different representations of physical systems, particularly in thermodynamics and mechanics. Given a function f(x)f(x)f(x), the Legendre Transform g(p)g(p)g(p) is defined as:

g(p)=sup⁡x(px−f(x))g(p) = \sup_{x}(px - f(x))g(p)=xsup​(px−f(x))

where ppp is the derivative of fff with respect to xxx, i.e., p=dfdxp = \frac{df}{dx}p=dxdf​. This transformation is particularly useful because it allows one to convert between the original variable xxx and a new variable ppp, capturing the dual nature of certain problems. The Legendre Transform also has applications in optimizing functions and in the formulation of the Hamiltonian in classical mechanics. Importantly, the relationship between fff and ggg can reveal insights about the convexity of functions and their corresponding geometric interpretations.

Schottky Diode

A Schottky diode is a type of semiconductor diode characterized by its low forward voltage drop and fast switching speeds. Unlike traditional p-n junction diodes, the Schottky diode is formed by the contact between a metal and a semiconductor, typically n-type silicon. This metal-semiconductor junction allows for efficient charge carrier movement, resulting in a forward voltage drop of approximately 0.15 to 0.45 volts, significantly lower than that of conventional diodes.

The key advantages of Schottky diodes include their high efficiency, low reverse recovery time, and ability to handle high frequencies, making them ideal for applications in power supplies, RF circuits, and as rectifiers in solar panels. However, they have a higher reverse leakage current and are generally not suitable for high-voltage applications. The performance characteristics of Schottky diodes can be mathematically described using the Shockley diode equation, which takes into account the current flowing through the diode as a function of voltage and temperature.

Biot Number

The Biot Number (Bi) is a dimensionless quantity used in heat transfer analysis to characterize the relative importance of conduction within a solid to convection at its surface. It is defined as the ratio of thermal resistance within a body to thermal resistance at its surface. Mathematically, it is expressed as:

Bi=hLck\text{Bi} = \frac{hL_c}{k}Bi=khLc​​

where:

  • hhh is the convective heat transfer coefficient (W/m²K),
  • LcL_cLc​ is the characteristic length (m), often taken as the volume of the solid divided by its surface area,
  • kkk is the thermal conductivity of the solid (W/mK).

A Biot Number less than 0.1 indicates that temperature gradients within the solid are negligible, allowing for the assumption of a uniform temperature distribution. Conversely, a Biot Number greater than 10 suggests significant internal temperature gradients, necessitating a more complex analysis of the heat transfer process.

Red-Black Tree

A Red-Black Tree is a type of self-balancing binary search tree that maintains its balance through a set of properties that regulate the colors of its nodes. Each node is colored either red or black, and the tree satisfies the following key properties:

  1. The root node is always black.
  2. Every leaf node (NIL) is considered black.
  3. If a node is red, both of its children must be black (no two red nodes can be adjacent).
  4. Every path from a node to its descendant NIL nodes must contain the same number of black nodes.

These properties ensure that the tree remains approximately balanced, providing efficient performance for insertion, deletion, and search operations, all of which run in O(log⁡n)O(\log n)O(logn) time complexity. Consequently, Red-Black Trees are widely utilized in various applications, including associative arrays and databases, due to their balanced nature and efficiency.

Neuron-Glia Interactions

Neuron-Glia interactions are crucial for maintaining the overall health and functionality of the nervous system. Neurons, the primary signaling cells, communicate with glial cells, which serve supportive roles, through various mechanisms such as chemical signaling, electrical coupling, and extracellular matrix modulation. These interactions are vital for processes like neurotransmitter uptake, ion homeostasis, and the maintenance of the blood-brain barrier. Additionally, glial cells, especially astrocytes, play a significant role in modulating synaptic activity and plasticity, influencing learning and memory. Disruptions in these interactions can lead to various neurological disorders, highlighting their importance in both health and disease.

Szemerédi’S Theorem

Szemerédi’s Theorem is a fundamental result in combinatorial number theory, which states that any subset of the natural numbers with positive upper density contains arbitrarily long arithmetic progressions. In more formal terms, if a set A⊆NA \subseteq \mathbb{N}A⊆N has a positive upper density, defined as

lim sup⁡n→∞∣A∩{1,2,…,n}∣n>0,\limsup_{n \to \infty} \frac{|A \cap \{1, 2, \ldots, n\}|}{n} > 0,n→∞limsup​n∣A∩{1,2,…,n}∣​>0,

then AAA contains an arithmetic progression of length kkk for any positive integer kkk. This theorem has profound implications in various fields, including additive combinatorics and theoretical computer science. Notably, it highlights the richness of structure in sets of integers, demonstrating that even seemingly random sets can exhibit regular patterns. Szemerédi's Theorem was proven in 1975 by Endre Szemerédi and has inspired a wealth of research into the properties of integers and sequences.