StudierendeLehrende

A* Search

A* Search ist ein leistungsfähiger Algorithmus zur Pfadsuche und wird häufig in der Informatik eingesetzt, um den kürzesten Weg in Graphen zu finden. Er kombiniert die Vorzüge der Dijkstra-Methode und der Greedy-Best-First-Search, indem er sowohl die tatsächlichen Kosten vom Startknoten zu einem gegebenen Knoten als auch eine Schätzung der Kosten vom gegebenen Knoten zum Zielknoten berücksichtigt. Diese Schätzung wird durch eine Heuristik h(n)h(n)h(n) dargestellt, die die verbleibenden Kosten approximiert.

Der Gesamtkostenwert f(n)f(n)f(n) eines Knotens wird durch folgende Formel definiert:

f(n)=g(n)+h(n)f(n) = g(n) + h(n)f(n)=g(n)+h(n)

wobei g(n)g(n)g(n) die Kosten vom Startknoten bis zum aktuellen Knoten nnn sind. A* Search garantiert, dass der gefundene Pfad optimal ist, vorausgesetzt, die verwendete Heuristik ist admissibel, d.h. sie überschätzt die tatsächlichen Kosten nicht. Der Algorithmus ist besonders nützlich in Anwendungen wie Robotik, Spieleentwicklung und Routenplanung, da er effizient und flexibel ist.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Berry-Phase

Die Berry-Phase ist ein faszinierendes Konzept in der Quantenmechanik, das auftritt, wenn ein quantenmechanisches System adiabatisch durch einen Parameterraum bewegt wird. Wenn das System eine geschlossene Schleife in diesem Parameterraum durchläuft, erfährt es eine zusätzliche Phase, die von der geometrischen Form der Schleife abhängt, unabhängig von der Geschwindigkeit der Veränderung. Diese Phase wird als Berry-Phase bezeichnet und ist ein Beispiel für die Bedeutung der Geometrie in der Quantenmechanik. Mathematisch kann die Berry-Phase γ\gammaγ für einen Zustand ∣ψ⟩|\psi\rangle∣ψ⟩ beschrieben werden als:

γ=i∮C⟨ψ(R)∣∇Rψ(R)⟩⋅dR\gamma = i \oint_C \langle \psi(\mathbf{R}) | \nabla_{\mathbf{R}} \psi(\mathbf{R}) \rangle \cdot d\mathbf{R}γ=i∮C​⟨ψ(R)∣∇R​ψ(R)⟩⋅dR

wobei CCC die geschlossene Kurve im Parameterraum ist und R\mathbf{R}R die Parameter beschreibt. Diese Phase hat Anwendungen in verschiedenen Bereichen, wie z.B. in der Festkörperphysik, der Quantenoptik und der topologischen Quantenfeldtheorie.

Hypothesentest

Hypothesentests sind ein statistisches Verfahren, das verwendet wird, um Annahmen über eine Population auf der Grundlage von Stichprobendaten zu überprüfen. Der Prozess beginnt mit der Formulierung zweier konkurrierender Hypothesen: der Nullhypothese (H0H_0H0​), die eine allgemeine Behauptung oder einen Status quo darstellt, und der Alternativhypothese (H1H_1H1​), die eine neue oder differente Behauptung formuliert.

Um zu entscheiden, ob die Nullhypothese abgelehnt werden kann, wird ein Teststatistik berechnet, die auf den gesammelten Daten basiert. Dieser Wert wird dann mit einem kritischen Wert verglichen, der aus einer statistischen Verteilung abgeleitet wird. Wenn die Teststatistik in den kritischen Bereich fällt, wird die Nullhypothese verworfen. Die Ergebnisse werden oft durch einen p-Wert ergänzt, der die Wahrscheinlichkeit angibt, dass die beobachteten Daten unter der Annahme der Nullhypothese auftreten.

Zusammenfassend ist Hypothesentest ein essentielles Werkzeug in der Statistik zur Unterstützung von Entscheidungsprozessen, das hilft, die Gültigkeit von Annahmen anhand empirischer Daten zu überprüfen.

Jaccard-Index

Der Jaccard Index ist ein Maß für die Ähnlichkeit zwischen zwei Mengen und wird häufig in der Statistik sowie der Informatik verwendet, insbesondere in der Analyse von Daten und der Mustererkennung. Er wird definiert als das Verhältnis der Größe der Schnittmenge zweier Mengen zur Größe der Vereinigungsmenge dieser beiden Mengen. Mathematisch ausgedrückt lautet der Jaccard Index J(A,B)J(A, B)J(A,B) für die Mengen AAA und BBB:

J(A,B)=∣A∩B∣∣A∪B∣J(A, B) = \frac{|A \cap B|}{|A \cup B|}J(A,B)=∣A∪B∣∣A∩B∣​

Hierbei steht ∣A∩B∣|A \cap B|∣A∩B∣ für die Anzahl der Elemente, die in beiden Mengen enthalten sind, während ∣A∪B∣|A \cup B|∣A∪B∣ die Gesamtanzahl der einzigartigen Elemente in beiden Mengen repräsentiert. Der Jaccard Index nimmt Werte im Bereich von 0 bis 1 an, wobei 0 bedeutet, dass die Mengen keine gemeinsamen Elemente haben, und 1 darauf hinweist, dass sie identisch sind. Er findet Anwendung in vielen Bereichen, einschließlich der Ökologie zur Messung der Artenvielfalt und in der Textanalyse zur Bestimmung der Ähnlichkeit zwischen Dokumenten.

Graphen-basierte Feldeffekttransistoren

Graphenbasierte Feldeffekttransistoren (GFETs) sind eine innovative Art von Transistoren, die Graphen als aktives Material verwenden. Graphen ist eine einlagige Struktur aus Kohlenstoffatomen, die in einem zweidimensionalen Gitter angeordnet sind und außergewöhnliche elektrische, thermische und mechanische Eigenschaften aufweisen. GFETs nutzen die hohe Beweglichkeit der Elektronen in Graphen, was zu schnellen Schaltzeiten und geringer Energieverbrauch führt. Diese Transistoren können in verschiedenen Anwendungen eingesetzt werden, darunter in der Hochfrequenztechnik, der Sensorik und in der flexiblen Elektronik. Ein entscheidendes Merkmal von GFETs ist die Möglichkeit, die Leitfähigkeit durch das Anlegen eines elektrischen Feldes an das Graphenmaterial zu steuern, was sie zu einem vielversprechenden Kandidaten für zukünftige Transistor-Entwicklungen macht.

Handelsüberschuss

Ein Trade Surplus oder Handelsüberschuss tritt auf, wenn der Wert der Exporte eines Landes den Wert der Importe übersteigt. Dies bedeutet, dass ein Land mehr Waren und Dienstleistungen verkauft als es kauft, was zu einem positiven Saldo in der Handelsbilanz führt. Der Handelsüberschuss kann als Indikator für eine starke Wirtschaft angesehen werden, da er darauf hinweist, dass die inländischen Produkte im internationalen Markt gefragt sind.

Mathematisch lässt sich der Handelsüberschuss wie folgt darstellen:

Handelsu¨berschuss=Exporte−Importe\text{Handelsüberschuss} = \text{Exporte} - \text{Importe}Handelsu¨berschuss=Exporte−Importe

Ein anhaltender Handelsüberschuss kann jedoch auch zu Spannungen mit Handelspartnern führen, da er als ungleiche Handelsbeziehung wahrgenommen werden kann. Zudem kann ein übermäßiger Fokus auf Exporte die wirtschaftliche Diversifizierung eines Landes gefährden.

Dynamische Inkonsistenz

Dynamische Inkonsistenz bezieht sich auf eine Situation, in der die Präferenzen eines Individuums oder einer Institution im Laufe der Zeit nicht konsistent bleiben, selbst wenn sich die Rahmenbedingungen nicht ändern. Dies tritt häufig in Entscheidungsprozessen auf, bei denen kurzfristige Belohnungen gegenüber langfristigen Zielen priorisiert werden, was zu suboptimalen Entscheidungen führt. Ein klassisches Beispiel ist das Temptation-Problem, bei dem jemand plant, gesünder zu leben, aber kurzfristig die Versuchung hat, ungesunde Lebensmittel zu konsumieren.

Die mathematische Formulierung kann in Form eines intertemporalen Optimierungsproblems dargestellt werden, bei dem der Nutzen UUU über die Zeit ttt maximiert wird:

max⁡∑t=0TU(ct)(1+r)t\max \sum_{t=0}^{T} \frac{U(c_t)}{(1 + r)^t}maxt=0∑T​(1+r)tU(ct​)​

Hierbei ist ctc_tct​ der Konsum zu einem bestimmten Zeitpunkt ttt und rrr der Diskontierungsfaktor. Wenn jedoch zukünftige Entscheidungen von gegenwärtigen Präferenzen abweichen, entsteht dynamische Inkonsistenz, was zu einer Abweichung von der optimalen Strategie führt.