Das Spektraltheorem ist ein fundamentales Resultat in der linearen Algebra und Funktionalanalysis, das sich mit Matrizen und linearen Operatoren beschäftigt. Es besagt, dass jede selbstadjungierte oder hermitesch Matrix, d.h. eine Matrix , für die gilt (wobei die konjugiert-transponierte Matrix ist), in einer geeigneten Basis diagonalisiert werden kann. Das bedeutet, dass es eine orthonormale Basis von Eigenvektoren gibt, sodass die Matrix in dieser Basis die Form einer Diagonalmatrix annimmt, wobei die Diagonalelemente die Eigenwerte von sind.
Formal ausgedrückt, wenn selbstadjungiert ist, existiert eine orthogonale Matrix und eine Diagonalmatrix , sodass gilt:
Das Spektraltheorem ermöglicht es, viele Probleme in der Mathematik und Physik zu vereinfachen, da die Diagonalisierung es erlaubt, komplizierte Operationen auf Matrizen durch einfachere Berechnungen mit ihren Eigenwerten und Eigenvektoren zu ersetzen. Es findet Anwendung in verschiedenen Bereichen, darunter Quantenmechanik, Statistik und in der Lösung von Differentialgleichungen
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.