StudierendeLehrende

Attention Mechanisms

Attention Mechanisms sind ein zentraler Bestandteil moderner neuronaler Netze, insbesondere in der Verarbeitung natürlicher Sprache und der Bildverarbeitung. Sie ermöglichen es einem Modell, sich auf bestimmte Teile der Eingabedaten zu konzentrieren, während andere Teile ignoriert werden. Dies geschieht durch die Berechnung von Gewichtungen, die bestimmen, wie viel Aufmerksamkeit jedem Element der Eingabesequenz geschenkt wird. Mathematisch wird dies oft durch die Berechnung eines Aufmerksamkeitsvektors dargestellt, der aus den Eingaben generiert wird. Ein häufig verwendetes Modell ist das Scaled Dot-Product Attention, bei dem die Gewichtungen durch die Skalarprodukte zwischen Queries und Keys bestimmt werden:

Attention(Q,K,V)=softmax(QKTdk)V\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)VAttention(Q,K,V)=softmax(dk​​QKT​)V

Hierbei sind QQQ die Abfragen, KKK die Schlüssel und VVV die Werte, wobei dkd_kdk​ die Dimension der Schlüssel darstellt. Durch die Verwendung von Attention Mechanisms können Modelle effektiver relevante Informationen extrahieren und gezielt verarbeiten, was ihre Leistung erheblich steigert.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Pole Placement Regelungdesign

Das Pole Placement Controller Design ist eine Methode zur Regelungstechnik, die darauf abzielt, die Pole eines dynamischen Systems durch geeignete Auswahl von Rückführungsgewinnen zu platzieren. Dies geschieht in der Regel bei linearen, zeitinvarianten Systemen, die durch Zustandsraumdarstellungen beschrieben werden. Der Hauptgedanke besteht darin, die Systemdynamik zu beeinflussen und das Verhalten des Systems zu steuern, indem man die Eigenwerte der geschlossenen Schleife an gewünschte Positionen im komplexen Bereich verlagert.

Der Prozess umfasst typischerweise die folgenden Schritte:

  1. Modellierung des Systems: Zuerst wird das System durch seine Zustandsraumdarstellung definiert, normalerweise in der Form x˙=Ax+Bu\dot{x} = Ax + Bux˙=Ax+Bu, wobei AAA die Systemmatrix, BBB die Eingangsmatrix, xxx der Zustandsvektor und uuu der Eingang ist.
  2. Auswahl der Zielpole: Der Ingenieur wählt die gewünschten Pole, die das dynamische Verhalten des Systems (z.B. Stabilität, Überschwingverhalten) bestimmen.
  3. Berechnung der Rückführungsgewinne: Mithilfe des Ackermann-Formulars oder anderer Methoden werden die Rückführungsgewinne KKK so bestimmt, dass die Eigenwerte der Matrix

Zener-Diode

Eine Zener-Diode ist eine spezielle Art von Halbleiterdiode, die in der Umkehrrichtung betrieben wird und dazu gedacht ist, eine konstante Spannung zu halten, wenn eine bestimmte Durchbruchspannung erreicht wird. Diese Durchbruchspannung ist die sogenannte Zener-Spannung, die für jede Zener-Diode spezifisch ist. Die Hauptanwendung der Zener-Diode besteht in der Spannungsregulation, da sie in der Lage ist, über einem bestimmten Spannungswert einen stabilen Ausgang zu liefern, selbst wenn sich der Strom verändert.

Ein typisches Anwendungsbeispiel ist der Einsatz in Spannungsreglern, wo die Zener-Diode in Parallelschaltung zu einer Last verwendet wird. Wenn die Spannung an der Diode die Zener-Spannung VZV_ZVZ​ überschreitet, bleibt die Spannung an der Last nahezu konstant, was bedeutet, dass die Zener-Diode als Spannungsreferenz fungiert.

Zusammengefasst lässt sich sagen, dass die Zener-Diode eine kritische Rolle in der Elektronik spielt, insbesondere in der Stromversorgung und in Schaltungen, wo eine stabile Spannung erforderlich ist.

Bilateral Monopoly Preisbildung

Das Konzept des Bilateral Monopoly Price Setting beschreibt eine Marktsituation, in der sowohl der Käufer als auch der Verkäufer monopolartige Macht haben. In dieser Struktur gibt es nur einen Anbieter und einen Nachfrager, was zu einer einzigartigen Verhandlungssituation führt. Beide Parteien können ihre Preise und Mengen durch Verhandlungen festlegen, was bedeutet, dass der Preis nicht durch den Marktmechanismus bestimmt wird, sondern durch die Interaktion zwischen Käufer und Verkäufer.

In einem bilateralen Monopol kann der Preis PPP als Ergebnis der Verhandlungen zwischen den beiden Parteien angesehen werden und wird oft durch die Gleichgewichtsmengen QdQ_dQd​ (Nachfragemenge) und QsQ_sQs​ (Angebotsmenge) beeinflusst. Die Maximierung des Gesamtgewinns durch beide Parteien erfordert eine sorgfältige Abstimmung, um den Wohlfahrtsgewinn zu maximieren. Dies kann mathematisch als

Gesamtgewinn=Erlo¨s−Kosten\text{Gesamtgewinn} = \text{Erlös} - \text{Kosten}Gesamtgewinn=Erlo¨s−Kosten

ausgedrückt werden, wobei sowohl Erlös als auch Kosten von der jeweiligen Preisgestaltung abhängen.

Gitter-QCD-Berechnungen

Lattice QCD (Quantenchromodynamik) ist eine numerische Methode zur Untersuchung von stark wechselwirkenden Teilchen und deren Wechselwirkungen. Bei dieser Methode wird der Raum-Zeit-Kontinuum in ein diskretes Gitter unterteilt, wodurch komplexe Berechnungen auf einem endlichen, regulierten Gitter durchgeführt werden können. Dies ermöglicht es, die Eigenschaften von Hadronen, wie Mesonen und Baryonen, sowie Phänomene wie den Higgs-Mechanismus und Quark-Gluon-Plasma zu untersuchen. Die Berechnungen werden typischerweise mit Hilfe von Monte-Carlo-Simulationen durchgeführt, um die Quantenfluktuationen und die statistischen Eigenschaften des Systems zu erfassen. Ein zentrales Ziel der Lattice-QCD-Berechnungen ist es, die parametrisierten Werte der physikalischen Größen wie Masse und Kopplungskonstanten präzise zu bestimmen. Durch den Vergleich dieser Berechnungen mit experimentellen Daten können wichtige Einblicke in die fundamentalen Kräfte und die Struktur der Materie gewonnen werden.

Stringtheorie

Die Stringtheorie ist ein theoretisches Modell in der Physik, das versucht, die Grundlagen der Teilchenphysik und der Gravitation zu vereinen. Im Gegensatz zu herkömmlichen Teilchenmodellen, die Punktteilchen beschreiben, postuliert die Stringtheorie, dass die fundamentalen Bausteine der Materie nicht punktförmig sind, sondern eher als eindimensionale „Strings“ betrachtet werden können. Diese Strings können vibrieren und die verschiedenen Moden dieser Vibrationen entsprechen den unterschiedlichen Teilchen, die wir beobachten.

Die Theorie führt zu einer Vielzahl von Konsequenzen, darunter die Vorhersage zusätzlicher Dimensionen jenseits der uns bekannten vier (drei Raumdimensionen und die Zeit), typischerweise bis zu zehn oder elf Dimensionen. Ein zentrales Konzept der Stringtheorie ist die Supersymmetrie, die besagt, dass jedem bekannten Teilchen ein noch unbekanntes Partnerteilchen entspricht. Trotz ihrer mathematischen Eleganz ist die Stringtheorie bislang experimentell nicht verifiziert, was sie zu einem faszinierenden, aber umstrittenen Bereich der modernen Physik macht.

Perfekter Binärbaum

Ein Perfect Binary Tree (perfekter binärer Baum) ist eine spezielle Art von binärem Baum, bei dem jeder Knoten genau zwei Kinder hat und alle Blätter auf derselben Ebene liegen. Das bedeutet, dass jeder Knoten entweder zwei Kinder hat oder ein Blatt ist. In einem perfekten binären Baum mit Höhe hhh gibt es genau 2h+1−12^{h+1} - 12h+1−1 Knoten und 2h2^h2h Blätter. Diese Struktur ist besonders nützlich in der Informatik, da sie eine optimale Speicherausnutzung und gleichmäßige Verteilung der Daten ermöglicht. Die vollständige und symmetrische Natur eines perfekten binären Baums erleichtert viele Algorithmen, die auf Baumstrukturen basieren, wie z.B. die Traversierung oder die Suche nach Werten.