StudierendeLehrende

Pythagorean Triples

Pythagorean Triples sind spezielle Gruppen von drei positiven ganzen Zahlen (a,b,c)(a, b, c)(a,b,c), die die Gleichung des Pythagoreischen Satzes erfüllen:

a2+b2=c2a^2 + b^2 = c^2a2+b2=c2

Hierbei ist ccc die Länge der Hypotenuse eines rechtwinkligen Dreiecks, während aaa und bbb die Längen der beiden anderen Seiten darstellen. Ein bekanntes Beispiel für ein Pythagorean Triple ist (3,4,5)(3, 4, 5)(3,4,5), da 32+42=9+16=25=523^2 + 4^2 = 9 + 16 = 25 = 5^232+42=9+16=25=52. Pythagorean Triples können durch verschiedene Methoden generiert werden, darunter die Verwendung von zwei positiven ganzen Zahlen mmm und nnn (mit m>nm > nm>n) durch die Formeln:

a=m2−n2,b=2mn,c=m2+n2a = m^2 - n^2, \quad b = 2mn, \quad c = m^2 + n^2a=m2−n2,b=2mn,c=m2+n2

Diese Triples sind von besonderer Bedeutung in der Mathematik und finden Anwendung in verschiedenen Bereichen, wie z.B. in der Geometrie und der Zahlentheorie.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Adaptive Erwartungen

Adaptive Expectations ist ein Konzept in der Wirtschaftswissenschaft, das beschreibt, wie Individuen und Unternehmen ihre Erwartungen über zukünftige wirtschaftliche Variablen, wie beispielsweise Inflation oder Einkommen, auf der Grundlage vergangener Erfahrungen anpassen. Die Grundannahme ist, dass Menschen ihre Erwartungen nicht sofort, sondern schrittweise aktualisieren, indem sie vergangene Informationen berücksichtigen.

Mathematisch kann dies durch die folgende Gleichung dargestellt werden:

Et(Y)=Et−1(Y)+α(Yt−Et−1(Y))E_t(Y) = E_{t-1}(Y) + \alpha (Y_t - E_{t-1}(Y))Et​(Y)=Et−1​(Y)+α(Yt​−Et−1​(Y))

Hierbei ist Et(Y)E_t(Y)Et​(Y) die erwartete Größe zum Zeitpunkt ttt, YtY_tYt​ der tatsächliche Wert und α\alphaα ein Anpassungsparameter zwischen 0 und 1, der angibt, wie stark die Erwartungen angepasst werden.

Diese Theorie impliziert, dass Erwartungen in der Regel träge sind und oft hinter den tatsächlichen Entwicklungen zurückbleiben, was zu Verzögerungen in wirtschaftlichen Reaktionen führen kann. Adaptive Expectations sind besonders relevant in der Diskussion um die Phillips-Kurve, die den Zusammenhang zwischen Inflation und Arbeitslosigkeit beschreibt.

Merkle-Baum

Ein Merkle Tree ist eine strukturierte Datenstruktur, die hauptsächlich in der Informatik und Kryptographie verwendet wird, um Daten effizient und sicher zu verifizieren. Er besteht aus Knoten, die jeweils einen Hash-Wert repräsentieren, der aus den Daten oder den Hashes seiner Kindknoten berechnet wird. Die Wurzel des Merkle Trees, der als Merkle-Wurzel bezeichnet wird, fasst die gesamten Daten in einem einzigen Hash-Wert zusammen, was die Integrität der Daten gewährleistet.

Ein Merkle Tree ist besonders nützlich in verteilten Systemen, wie z.B. Blockchains, da er es ermöglicht, große Datenmengen zu überprüfen, ohne die gesamten Daten übertragen zu müssen. Wenn ein Teil der Daten geändert wird, ändert sich die Merkle-Wurzel, was eine einfache Möglichkeit bietet, Änderungen nachzuverfolgen und sicherzustellen, dass die Daten nicht manipuliert wurden. Die Effizienz dieser Struktur ergibt sich aus ihrer logarithmischen Tiefe, was bedeutet, dass die Verifizierung von Daten in O(log⁡n)O(\log n)O(logn) Zeit erfolgt.

Jevons-Paradoxon

Das Jevons Paradox beschreibt ein Phänomen, bei dem eine Verbesserung der Energieeffizienz eines bestimmten Produkts oder einer Technologie zu einem Anstieg des Gesamtverbrauchs dieser Ressource führen kann. Ursprünglich formuliert von dem britischen Ökonomen William Stanley Jevons im Jahr 1865, stellte er fest, dass die effizientere Nutzung von Kohle in Dampfmaschinen nicht zu einem Rückgang, sondern zu einem Anstieg des Kohleverbrauchs führte, da niedrigere Kosten und höhere Effizienz zu einem größeren Einsatz führten. Dieses Paradox zeigt, dass Effizienzgewinne nicht zwangsläufig zu einem geringeren Ressourcenverbrauch führen, sondern auch zu einer Steigerung der Nachfrage führen können. Daher ist es wichtig, bei der Entwicklung von Strategien zur Reduzierung des Energieverbrauchs auch die Gesamtwirtschaft und das Verhalten der Verbraucher zu berücksichtigen. Das Jevons Paradox ist besonders relevant im Kontext der Nachhaltigkeit und der Energiepolitik, da es darauf hinweist, dass technologische Fortschritte allein nicht ausreichen, um den Ressourcenverbrauch zu senken, ohne begleitende Maßnahmen zur Regulierung und Bewusstseinsbildung.

Tunneling-Feldeffekttransistor

Der Tunneling Field-Effect Transistor (TFET) ist ein innovativer Transistortyp, der auf dem Prinzip des quantenmechanischen Tunnels basiert. Im Gegensatz zu herkömmlichen MOSFETs, die auf thermischer Erregung beruhen, nutzen TFETs den Tunneling-Effekt, um Elektronen durch eine energetische Barriere zu bewegen. Dies ermöglicht eine geringere Betriebsspannung und höhere Energieeffizienz, was sie besonders attraktiv für moderne Anwendungen in der Nanoelektronik macht.

Der TFET besteht typischerweise aus einer p-n-Übergangsstruktur, wobei der Tunneling-Effekt zwischen den beiden Bereichen auftritt, wenn eine geeignete Spannung anliegt. Die mathematische Beziehung, die das Verhalten des TFET beschreibt, kann durch den Stromfluss III in Abhängigkeit von der Gate-Spannung VGSV_{GS}VGS​ und der Drain-Spannung VDSV_{DS}VDS​ dargestellt werden:

I∝(VGS−Vth)n⋅e−EgkTI \propto (V_{GS} - V_{th})^n \cdot e^{-\frac{E_g}{kT}}I∝(VGS​−Vth​)n⋅e−kTEg​​

Hierbei steht VthV_{th}Vth​ für die Schwellenspannung, EgE_gEg​ für die Bandlücke, kkk für die Boltzmann-Konstante und TTT für die

Zustandsraumdarstellung in der Regelung

Die Zustandsraummodellierung ist ein fundamentales Konzept in der Regelungstechnik, das es ermöglicht, dynamische Systeme in einer mathematisch präzisen Form darzustellen. In dieser Darstellung wird das System durch einen Vektor von Zuständen x\mathbf{x}x beschrieben, der alle relevanten Informationen über den aktuellen Zustand des Systems enthält. Mathematisch wird ein dynamisches System durch folgende Gleichungen definiert:

x˙=Ax+Bu\dot{\mathbf{x}} = \mathbf{Ax} + \mathbf{Bu}x˙=Ax+Bu y=Cx+Du\mathbf{y} = \mathbf{Cx} + \mathbf{Du}y=Cx+Du

Hierbei bezeichnet A\mathbf{A}A die Systemmatrix, B\mathbf{B}B die Eingabematrix, C\mathbf{C}C die Ausgangsmatrix und D\mathbf{D}D die Durchgangsmatrix. Diese Formulierung ermöglicht es, die Systemdynamik mit Hilfe von linearen Algebra-Methoden zu analysieren und verschiedene Regelungsstrategien zu entwickeln, wie z.B. Zustandsregelung und Beobachterdesign. Die Zustandsraummodellierung ist besonders nützlich, da sie Mehrgrößensysteme und nichtlineare Systeme effizient behandeln kann.

Nanoelektromechanische Resonatoren

Nanoelectromechanical Resonators (NEM-Resonatoren) sind mikroskopisch kleine Geräte, die mechanische und elektrische Eigenschaften kombinieren, um hochpräzise Messungen und Resonanzeffekte zu erzeugen. Diese Resonatoren bestehen typischerweise aus nanoskaligen Materialien und Strukturen, die auf Veränderungen in elektrischen Feldern oder mechanischen Kräften reagieren. Sie nutzen die Prinzipien der Resonanz, wobei sie bei bestimmten Frequenzen schwingen, was ihre Empfindlichkeit gegenüber externen Störungen erhöht.

Die Anwendungsmöglichkeiten sind vielfältig und reichen von Sensoren in der Biomedizin bis hin zu Mikroelektronik, wo sie zur Verbesserung der Signalverarbeitung und Datenspeicherung eingesetzt werden. Besonders hervorzuheben ist die Fähigkeit von NEM-Resonatoren, sehr kleine Massen oder Kräfte mit hoher Genauigkeit zu detektieren, was sie zu einem vielversprechenden Werkzeug in der Nanotechnologie macht. Ihre Innovationskraft liegt in der Kombination von hoher Empfindlichkeit und miniaturisierten Dimensionen, was sie zu einer Schlüsseltechnologie für die Zukunft der Elektronik und Sensorik macht.