StudierendeLehrende

Tunneling Field-Effect Transistor

Der Tunneling Field-Effect Transistor (TFET) ist ein innovativer Transistortyp, der auf dem Prinzip des quantenmechanischen Tunnels basiert. Im Gegensatz zu herkömmlichen MOSFETs, die auf thermischer Erregung beruhen, nutzen TFETs den Tunneling-Effekt, um Elektronen durch eine energetische Barriere zu bewegen. Dies ermöglicht eine geringere Betriebsspannung und höhere Energieeffizienz, was sie besonders attraktiv für moderne Anwendungen in der Nanoelektronik macht.

Der TFET besteht typischerweise aus einer p-n-Übergangsstruktur, wobei der Tunneling-Effekt zwischen den beiden Bereichen auftritt, wenn eine geeignete Spannung anliegt. Die mathematische Beziehung, die das Verhalten des TFET beschreibt, kann durch den Stromfluss III in Abhängigkeit von der Gate-Spannung VGSV_{GS}VGS​ und der Drain-Spannung VDSV_{DS}VDS​ dargestellt werden:

I∝(VGS−Vth)n⋅e−EgkTI \propto (V_{GS} - V_{th})^n \cdot e^{-\frac{E_g}{kT}}I∝(VGS​−Vth​)n⋅e−kTEg​​

Hierbei steht VthV_{th}Vth​ für die Schwellenspannung, EgE_gEg​ für die Bandlücke, kkk für die Boltzmann-Konstante und TTT für die

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Leistungselektronik

Power Electronics ist ein Fachgebiet der Elektrotechnik, das sich mit der Steuerung und Umwandlung elektrischer Energie befasst. Es umfasst die Entwicklung von Schaltungen und Systemen, die elektrische Energie effizient umwandeln, steuern und verteilen. Zu den typischen Anwendungen gehören beispielsweise Wechselrichter, Gleichrichter und DC-DC-Wandler, die in erneuerbaren Energiesystemen, elektrischen Antrieben und der Stromversorgung verwendet werden. Die Hauptziele der Leistungselektronik sind die Verbesserung der Energieeffizienz, die Reduzierung von Verlusten und die Erhöhung der Zuverlässigkeit der Systeme. Ein zentrales Element sind Halbleiterbauelemente wie Transistoren und Thyristoren, die eine präzise Steuerung des Energieflusses ermöglichen.

Bankenkrisen

Banking-Krisen sind schwerwiegende finanzielle Erschütterungen, die das Vertrauen in das Bankensystem untergraben und zu einem massiven Rückzug von Einlagen führen können. Diese Krisen entstehen oft durch eine Kombination von schlechten Krediten, übermäßiger Spekulation und unzureichender Regulierung. Wenn Banken große Verluste aus ihren Krediten erleiden, können sie in Liquiditätsprobleme geraten, was dazu führt, dass sie ihre Kredite nicht mehr bedienen können. Eine häufige Folge ist der sogenannte "Bank-Run", bei dem viele Kunden gleichzeitig versuchen, ihr Geld abzuheben, was die Situation weiter verschärft. Um solche Krisen zu vermeiden, sind umfassende Regulierungsmaßnahmen und ein effektives Risikomanagement erforderlich. Historisch gesehen haben Banking-Krisen erhebliche wirtschaftliche Auswirkungen, die von einer Rezession bis hin zu langfristigen Strukturveränderungen in der Finanzindustrie reichen können.

Eigenwert-Störungstheorie

Die Eigenvalue Perturbation Theory beschäftigt sich mit der Analyse von Veränderungen der Eigenwerte und Eigenvektoren eines Operators oder einer Matrix, wenn dieser durch eine kleine Störung modifiziert wird. Wenn wir eine Matrix AAA haben, deren Eigenwerte und Eigenvektoren bekannt sind, und wir eine kleine Störung EEE hinzufügen, sodass die neue Matrix A′=A+EA' = A + EA′=A+E ist, können wir die Auswirkungen dieser Störung auf die Eigenwerte und Eigenvektoren untersuchen.

Die Theorie zeigt, dass die Eigenwerte λ\lambdaλ einer Matrix AAA und die zugehörigen Eigenvektoren vvv sich unter der Störung wie folgt ändern:

λ′≈λ+⟨v,Ev⟩\lambda' \approx \lambda + \langle v, E v \rangleλ′≈λ+⟨v,Ev⟩

Hierbei bezeichnet ⟨v,Ev⟩\langle v, E v \rangle⟨v,Ev⟩ das Skalarprodukt zwischen dem Eigenvektor vvv und dem durch die Störung EEE veränderten Eigenvektor. Diese Erkenntnisse sind besonders nützlich in der Quantenmechanik und der Stabilitätsanalyse, wo es oft erforderlich ist, die Reaktion eines Systems auf kleine Veränderungen zu verstehen.

Schrittmotor

Ein Stepper Motor ist ein spezieller Typ von Elektromotor, der in präzisen Positionierungsanwendungen eingesetzt wird. Im Gegensatz zu herkömmlichen Motoren dreht sich ein Stepper Motor in diskreten Schritten, was bedeutet, dass er sich nur um bestimmte Winkelpositionen bewegt. Diese Schritte ermöglichen eine exakte Steuerung der Position und Geschwindigkeit, was ihn ideal für Anwendungen wie 3D-Drucker, CNC-Maschinen und Robotik macht.

Die Funktionsweise beruht auf der magnetischen Anziehung von Spulen, die in einem bestimmten Muster aktiviert werden, um den Rotor schrittweise zu bewegen. Ein typisches Beispiel ist ein Motor mit 200 Schritten pro Umdrehung, der somit einen Schrittwinkel von 360200=1.8\frac{360}{200} = 1.8200360​=1.8 Grad pro Schritt hat. Diese hohe Präzision und Wiederholgenauigkeit machen Stepper Motoren zu einer beliebten Wahl in der modernen Automatisierungstechnik.

MEMS-Beschleunigungssensor-Design

Ein MEMS-Beschleunigungsmesser (Micro-Electro-Mechanical Systems) ist ein Miniaturgerät, das Beschleunigungskräfte misst, die auf einen Körper wirken. Das Design basiert auf der Integration von mechanischen und elektrischen Komponenten auf einem einzigen Chip, was eine hohe Präzision und Empfindlichkeit ermöglicht. Wesentliche Elemente eines MEMS-Beschleunigungsmessers sind:

  • Sensorelemente: Diese bestehen oft aus einem beweglichen Masse-Element, das auf einer flexiblen Feder gelagert ist und durch die Beschleunigung verrückt wird.
  • Wandler: Die Bewegung der Masse wird in ein elektrisches Signal umgewandelt, häufig durch Kapazitätsänderungen, die dann gemessen werden.

Ein typisches Design erfordert die Berücksichtigung von Faktoren wie Dämpfung, Stabilität und Temperaturkompensation, um die Genauigkeit zu gewährleisten. Die mathematische Beschreibung der Bewegung kann durch die Gleichung F=m⋅aF = m \cdot aF=m⋅a erfolgen, wobei FFF die auf die Masse wirkende Kraft, mmm die Masse und aaa die Beschleunigung ist. MEMS-Beschleunigungsmesser finden Anwendung in verschiedenen Bereichen, einschließlich der Automobilindustrie, Mobiltelefonen und tragbaren Geräten.

Eckpunktdetektion

Die Articulation Point Detection ist ein Verfahren in der Graphentheorie, das dazu dient, bestimmte Knoten in einem Graphen zu identifizieren, deren Entfernung den Graphen in mehrere Komponenten zerlegt. Solche Knoten werden als Artikulationspunkte bezeichnet. Ein Graph kann als zusammenhängend betrachtet werden, wenn es von jedem Knoten zu jedem anderen Knoten einen Pfad gibt. Wenn ein Artikulationspunkt entfernt wird, kann es vorkommen, dass einige Knoten nicht mehr erreichbar sind, was zu einem Verlust der Zusammenhängigkeit führt.

Die Erkennung von Artikulationspunkten erfolgt häufig mithilfe von Algorithmen wie dem von Tarjan, der eine Tiefensuche (DFS) verwendet und dabei für jeden Knoten zwei wichtige Werte verfolgt: die Entdeckungzeit und den niedrigsten erreichbaren Knoten. Ein Knoten uuu ist ein Artikulationspunkt, wenn einer der folgenden Bedingungen erfüllt ist:

  1. uuu ist die Wurzel des DFS-Baums und hat mindestens zwei Kinder.
  2. uuu ist kein Wurzelknoten und es existiert ein Kind vvv, sodass kein anderer Nachfolger von uuu einen Knoten erreichen kann, der vor uuu entdeckt wurde.

Diese Konzepte sind von zentraler Bedeutung für die Netzwerkoptimierung und die Analyse der Robustheit von Netzwerken.