StudierendeLehrende

Bragg’S Law

Das Bragg-Gesetz beschreibt die Beziehung zwischen dem Einfallswinkel von Röntgenstrahlen auf eine kristalline Struktur und der Beugung dieser Strahlen. Es wird oft verwendet, um die Struktur von Kristallen zu analysieren. Das Gesetz lautet:

nλ=2dsin⁡(θ)n\lambda = 2d \sin(\theta)nλ=2dsin(θ)

Hierbei steht nnn für die Ordnung der Beugung, λ\lambdaλ für die Wellenlänge der einfallenden Strahlen, ddd für den Abstand zwischen den Kristallebenen und θ\thetaθ für den Einfallswinkel der Strahlen. Wenn die Bedingung erfüllt ist, interferieren die reflektierten Wellen konstruktiv und erzeugen ein intensives Beugungsmuster. Dieses Prinzip ist grundlegend in der Röntgenkristallografie, die es Wissenschaftlern ermöglicht, die atomare Struktur von Materialien zu bestimmen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Quantenverschränkungsentropie

Quantum Entanglement Entropy ist ein Konzept aus der Quantenmechanik, das die Verschränkung zwischen quantenmechanischen Systemen beschreibt. Es quantifiziert, wie viel Information über ein Teilchen verloren geht, wenn man das andere Teilchen in einem verschränkten Paar betrachtet. In der Regel wird diese Entropie durch die von Neumann-Entropie definiert, die für ein quantenmechanisches System mit der Dichteoperator ρ\rhoρ gegeben ist durch:

S(ρ)=−Tr(ρlog⁡ρ)S(\rho) = -\text{Tr}(\rho \log \rho)S(ρ)=−Tr(ρlogρ)

Hierbei steht Tr\text{Tr}Tr für die Spur des Operators, was eine Art von Summation über die Zustände des Systems ist. Eine hohe Entanglement-Entropie deutet darauf hin, dass die beiden Systeme stark miteinander verbunden sind, während eine niedrige Entropie darauf hinweist, dass sie weitgehend unabhängig sind. Diese Konzepte haben tiefgreifende Auswirkungen auf die Thermodynamik und die Informationsverarbeitung in Quantencomputern.

Preisstarrheit

Price Stickiness, oder** Preisrigidität**, beschreibt das Phänomen, dass Preise von Gütern und Dienstleistungen sich nicht sofort an Veränderungen der Marktbedingungen anpassen. Dies kann verschiedene Ursachen haben, darunter Verträge, Psychologie der Konsumenten und Kosten der Preisanpassung. Beispielsweise können Unternehmen zögern, Preise zu senken, auch wenn die Nachfrage sinkt, aus Angst, das Wahrnehmungsbild ihrer Marke zu schädigen.

Die Folgen von Preisrigidität können erhebliche wirtschaftliche Auswirkungen haben, insbesondere in Zeiten von Rezesssionen oder Inflation. In solchen Situationen kann die langsame Anpassung der Preise zu einem Ungleichgewicht zwischen Angebot und Nachfrage führen, was zu Ressourcenineffizienz und Marktinstabilität führen kann. In vielen Modellen der Makroökonomie wird Price Stickiness als einen der Hauptgründe für die kurzfristige Ineffizienz von Märkten betrachtet.

Regulierung von Genexpressionsrauschen

Die Regulation von Genexpressionsrauschen bezieht sich auf die Mechanismen, die sicherstellen, dass die Variabilität in der Genexpression innerhalb einer Zelle kontrolliert wird. Genexpressionsrauschen beschreibt die zufälligen Schwankungen in der Menge an mRNA oder Protein, die von einem bestimmten Gen produziert wird, selbst unter identischen Bedingungen. Diese Schwankungen können zu unterschiedlichen phänotypischen Ausdrücken führen, was für die Zellfunktion und die Reaktion auf Umweltbedingungen entscheidend ist. Um die negativen Auswirkungen von Rauschen zu minimieren, nutzen Zellen verschiedene Strategien, wie z.B. Feedback-Schleifen, Kopplung von Genen oder die Verwendung von Regulatorproteinen, die die Stabilität der mRNA und die Effizienz der Translation beeinflussen. Eine gut regulierte Genexpression ist für die Homöostase der Zelle und die Anpassungsfähigkeit an Veränderungen in der Umgebung unerlässlich.

Photonische Bandlücken-Engineering

Photonic Bandgap Engineering bezieht sich auf die gezielte Gestaltung von Materialien, um spezifische Wellenlängen von Licht zu kontrollieren und zu manipulieren. In diesen Materialien, oft als Photonic Crystals bezeichnet, werden die Lichtwellen durch periodische Strukturen reflektiert oder durchgelassen, was zu einem sogenannten photonic bandgap führt. Dieser Bandgap ist ein Frequenzbereich, in dem Licht nicht propagieren kann, ähnlich wie bei elektronischen Halbleitern.

Die Eigenschaften dieser Materialien können durch die Variation von Faktoren wie der Struktur, der Geometrie und dem Materialtyp angepasst werden, was zu vielseitigen Anwendungen in der Optoelektronik, Sensorik und Telekommunikation führt. Ein Beispiel ist die Entwicklung von Laser oder Filter mit sehr spezifischen Eigenschaften, die durch die Manipulation des Bandgaps erreicht werden. Mathematisch lässt sich der photonic bandgap durch die Bragg-Bedingung darstellen, die beschreibt, wie die Wellenlänge des Lichts im Verhältnis zur Struktur des Materials steht.

Skaleneffekte

Economies of Scope beziehen sich auf die Kostenvorteile, die ein Unternehmen erzielt, wenn es mehrere Produkte oder Dienstleistungen gleichzeitig produziert, anstatt diese einzeln zu erstellen. Dies geschieht, weil die gemeinsame Nutzung von Ressourcen, wie Arbeitskräften, Technologien oder Vertriebskanälen, die Gesamtkosten senken kann. Ein häufiges Beispiel ist ein Unternehmen, das sowohl Computer als auch Drucker herstellt; es kann dieselben Komponenten und Mitarbeiter für die Produktion beider Produkte nutzen, was die Kosten pro Einheit reduziert. Mathematisch lässt sich dies darstellen, wenn die Gesamtkosten CCC für die Produktion von zwei Produkten AAA und BBB niedriger sind als die Summe der Kosten für die Produktion der beiden Produkte einzeln:

C(A,B)<C(A)+C(B)C(A, B) < C(A) + C(B)C(A,B)<C(A)+C(B)

In diesem Zusammenhang ist es wichtig zu beachten, dass Economies of Scope nicht nur auf die Kostensenkung abzielen, sondern auch die Effizienz und Flexibilität eines Unternehmens erhöhen können.

Überlappende Generationen

Das Konzept der überlappenden Generationen (Overlapping Generations, OLG) ist ein wirtschaftswissenschaftliches Modell, das die Interaktionen zwischen verschiedenen Altersgruppen innerhalb einer Gesellschaft beschreibt. In diesem Modell leben Individuen nicht nur in einer einzigen Generation, sondern es gibt mehrere Generationen, die gleichzeitig existieren und wirtschaftliche Entscheidungen treffen. Diese Überlappung führt zu einem dynamischen Gleichgewicht, in dem jüngere Generationen von den Entscheidungen der älteren Generationen beeinflusst werden und umgekehrt.

Ein zentrales Merkmal des OLG-Modells ist die Annahme, dass Individuen ihr Einkommen über ihre Lebensspanne hinweg maximieren, was zu Entscheidungen über Sparen, Investitionen und Konsum führt. Mathematisch kann dies durch Gleichungen wie

U(ct,ct+1)=log⁡(ct)+βlog⁡(ct+1)U(c_t, c_{t+1}) = \log(c_t) + \beta \log(c_{t+1})U(ct​,ct+1​)=log(ct​)+βlog(ct+1​)

dargestellt werden, wobei ctc_tct​ und ct+1c_{t+1}ct+1​ den Konsum in zwei aufeinanderfolgenden Perioden repräsentieren und β\betaβ den Zeitpräferenzfaktor darstellt. Das OLG-Modell wird häufig verwendet, um Probleme wie Renten, Öffentliche Finanzen und die Nachhaltigkeit von Sozialversicherungssystemen zu analysieren.