Bragg’S Law

Das Bragg-Gesetz beschreibt die Beziehung zwischen dem Einfallswinkel von Röntgenstrahlen auf eine kristalline Struktur und der Beugung dieser Strahlen. Es wird oft verwendet, um die Struktur von Kristallen zu analysieren. Das Gesetz lautet:

nλ=2dsin(θ)n\lambda = 2d \sin(\theta)

Hierbei steht nn für die Ordnung der Beugung, λ\lambda für die Wellenlänge der einfallenden Strahlen, dd für den Abstand zwischen den Kristallebenen und θ\theta für den Einfallswinkel der Strahlen. Wenn die Bedingung erfüllt ist, interferieren die reflektierten Wellen konstruktiv und erzeugen ein intensives Beugungsmuster. Dieses Prinzip ist grundlegend in der Röntgenkristallografie, die es Wissenschaftlern ermöglicht, die atomare Struktur von Materialien zu bestimmen.

Weitere verwandte Begriffe

Laplace-Transformation

Die Laplace-Transformation ist ein wichtiges mathematisches Werkzeug, das in der Ingenieurwissenschaft und Mathematik verwendet wird, um Differentialgleichungen zu lösen und Systeme zu analysieren. Sie wandelt eine Funktion f(t)f(t), die von der Zeit tt abhängt, in eine Funktion F(s)F(s), die von einer komplexen Frequenz ss abhängt, um. Die allgemeine Form der Laplace-Transformation ist gegeben durch die Gleichung:

F(s)=0estf(t)dtF(s) = \int_0^{\infty} e^{-st} f(t) \, dt

Hierbei ist este^{-st} der Dämpfungsfaktor, der hilft, das Verhalten der Funktion im Zeitbereich zu steuern. Die Transformation ist besonders nützlich, da sie die Lösung von Differentialgleichungen in algebraische Gleichungen umwandelt, was die Berechnungen erheblich vereinfacht. Die Rücktransformation, die als Inverse Laplace-Transformation bekannt ist, ermöglicht es, die ursprüngliche Funktion f(t)f(t) aus F(s)F(s) zurückzugewinnen.

Fama-French

Das Fama-French-Modell ist ein erweitertes Kapitalmarktmodell, das von den Ökonomen Eugene Fama und Kenneth French entwickelt wurde, um die Renditen von Aktien besser zu erklären. Es erweitert das traditionelle Capital Asset Pricing Model (CAPM) um zwei weitere Faktoren: die Größe (Size) und den Buchwert-Marktwert-Verhältnis (Value).

Im Fama-French-Modell wird die erwartete Rendite einer Aktie durch die Formel

E(Ri)=Rf+βi(E(Rm)Rf)+sSMB+hHMLE(R_i) = R_f + \beta_i (E(R_m) - R_f) + s \cdot SMB + h \cdot HML

beschrieben, wobei E(Ri)E(R_i) die erwartete Rendite der Aktie, RfR_f der risikofreie Zinssatz, βi\beta_i der Marktrisiko-Faktor, SMBSMB (Small Minus Big) den Größenfaktor und HMLHML (High Minus Low) den Wertfaktor darstellt.

Das Modell zeigt, dass kleinere Unternehmen tendenziell höhere Renditen erzielen als größere Unternehmen und dass Aktien mit einem hohen Buchwert im Vergleich zum Marktwert bessere Renditen bieten als solche mit einem niedrigen Buchwert. Dies macht das Fama-French-Modell zu einem wichtigen Instrument für Investoren und Finanzanalysten zur Bewertung von Aktien und zur Portfolio-Optimierung

Anisotropes Ätzen

Anisotropes Ätzen ist ein Verfahren, das in der Mikroelektronik und Nanotechnologie eingesetzt wird, um Materialien mit kontrollierten und spezifischen Geometrien zu bearbeiten. Im Gegensatz zum isotropen Ätzen, bei dem die Ätze gleichmäßig in alle Richtungen wirken, weist das anisotrope Ätzen eine gerichtete Ätzwirkung auf, die es ermöglicht, scharfe Kanten und präzise Strukturen zu erzeugen. Dies wird häufig durch die Verwendung von Ätzmitteln erreicht, die selektiv die Kristalloberflächen eines Materials angreifen, basierend auf deren Kristallorientierung.

Ein typisches Beispiel für anisotropes Ätzen ist das Ätzen von Silizium, bei dem die Ätzrate je nach Kristallrichtung variiert. Die Ätzrate kann in der Regel als Funktion der Kristallorientierung beschrieben werden, wobei die Beziehung durch die Formel R=kcos(θ)R = k \cdot \cos(\theta) definiert werden kann, wobei RR die Ätzrate, kk eine Konstante und θ\theta der Winkel zwischen der Ätzrichtung und der Kristalloberfläche ist. Die Fähigkeit, anisotrop zu ätzen, ist entscheidend für die Herstellung von Mikrochips und MEMS (Micro-Electro-Mechanical Systems), da sie die Miniaturisierung und die

Rankine-Wirkungsgrad

Die Rankine-Effizienz ist ein Maß für die Leistung eines Rankine-Zyklus, der häufig in Dampfkraftwerken zur Energieerzeugung verwendet wird. Sie definiert das Verhältnis der tatsächlich erzeugten Arbeit zur maximal möglichen Arbeit, die aus dem thermodynamischen Prozess gewonnen werden kann. Mathematisch wird die Rankine-Effizienz (η\eta) durch die Formel

η=WnettoQin\eta = \frac{W_{netto}}{Q_{in}}

bestimmt, wobei WnettoW_{netto} die netto erzeugte Arbeit und QinQ_{in} die zugeführte Wärme ist. Ein höherer Wert der Rankine-Effizienz bedeutet, dass der Zyklus effektiver arbeitet, was zu einer besseren Umwandlung von Wärme in mechanische Energie führt. Faktoren wie die Temperaturdifferenz zwischen dem heißen und dem kalten Reservoir sowie die Qualität des verwendeten Arbeitsmediums können die Effizienz erheblich beeinflussen.

Grüne Finanzierungs-CO2-Preisbildungsmechanismen

Green Finance Carbon Pricing Mechanisms sind Instrumente, die darauf abzielen, die Kosten für die Emission von Kohlenstoffdioxid (CO₂) in die Wirtschaft zu integrieren. Diese Mechanismen, wie z.B. CO₂-Steuern oder Emissionshandelssysteme, setzen einen Preis auf Kohlenstoffemissionen, um Anreize für Unternehmen und Verbraucher zu schaffen, ihren CO₂-Ausstoß zu reduzieren. Durch die internalisierung der externen Kosten von Treibhausgasemissionen wird die Entwicklung und Implementierung von umweltfreundlicheren Technologien gefördert.

Ein Beispiel für einen solchen Mechanismus ist der Emissionshandel, bei dem Unternehmen eine bestimmte Anzahl von Emissionszertifikaten erhalten, die ihnen erlauben, eine definierte Menge an CO₂ auszustoßen. Wenn sie weniger ausstoßen, können sie überschüssige Zertifikate verkaufen, was zu einem finanziellen Anreiz führt, Emissionen zu senken. Diese Mechanismen sind entscheidend für die Erreichung nationaler und internationaler Klimaziele und tragen zur Förderung einer nachhaltigen Wirtschaft bei.

Medizinische Bildgebung Deep Learning

Medical Imaging Deep Learning bezieht sich auf den Einsatz von künstlichen neuronalen Netzwerken zur Analyse und Interpretation medizinischer Bilder, wie z.B. Röntgenaufnahmen, CT-Scans und MRT-Bilder. Diese Technologien ermöglichen es, komplexe Muster in den Bilddaten zu erkennen, die für das menschliche Auge oft schwer zu identifizieren sind. Der Prozess umfasst typischerweise die folgenden Schritte:

  1. Datensammlung: Große Mengen an annotierten Bilddaten werden benötigt, um das Modell zu trainieren.
  2. Vorverarbeitung: Die Bilder werden bearbeitet, um Rauschen zu reduzieren und die Qualität zu verbessern.
  3. Modelltraining: Durch den Einsatz von Deep-Learning-Algorithmen, wie z.B. Convolutional Neural Networks (CNNs), wird das Modell trainiert, um Merkmale zu erkennen und Diagnosen zu stellen.
  4. Evaluation: Die Leistung des Modells wird überprüft, um sicherzustellen, dass es genaue und zuverlässige Ergebnisse liefert.

Diese Technologien haben das Potenzial, die Diagnosegenauigkeit zu verbessern und die Effizienz in der medizinischen Bildgebung signifikant zu erhöhen.

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.