StudierendeLehrende

Brillouin Light Scattering

Das Brillouin Light Scattering (BLS) ist ein physikalisches Phänomen, das auf der Wechselwirkung von Licht mit akustischen Wellen in einem Medium beruht. Wenn ein Lichtstrahl auf ein Material trifft, können die Photonen durch die elastischen Schwingungen der Atome im Material gestreut werden, was zu einer Frequenzverschiebung des gestreuten Lichts führt. Diese Frequenzverschiebung ist direkt mit der akustischen Wellenlänge und der Geschwindigkeit der Schallwellen im Material verknüpft und kann durch die Beziehung

Δf=2vλ\Delta f = \frac{2v}{\lambda}Δf=λ2v​

beschrieben werden, wobei Δf\Delta fΔf die Frequenzverschiebung, vvv die Schallgeschwindigkeit und λ\lambdaλ die Wellenlänge des Lichts ist. BLS wird häufig in der Materialforschung eingesetzt, um Informationen über mechanische Eigenschaften, wie Elastizität und Dämpfung, sowie über strukturelle Eigenschaften auf mikroskopischer Ebene zu gewinnen. Es ist eine nicht-invasive Technik, die sowohl in der Grundlagenforschung als auch in industriellen Anwendungen von Bedeutung ist.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Schur-Komplement

Das Schur-Komplement ist ein wichtiges Konzept in der linearen Algebra, das sich auf Matrizen bezieht. Gegeben sei eine blockierte Matrix AAA der Form

A=(BCDE)A = \begin{pmatrix} B & C \\ D & E \end{pmatrix}A=(BD​CE​)

wobei BBB eine invertierbare Matrix ist. Das Schur-Komplement von EEE in AAA wird definiert als

S=B−CE−1D.S = B - C E^{-1} D.S=B−CE−1D.

Dieses Konzept hat zahlreiche Anwendungen, insbesondere in der Statistik, Optimierung und in der Lösung von linearen Gleichungssystemen. Es ermöglicht unter anderem die Reduktion von Dimensionen und die effiziente Berechnung von Inversen blockierter Matrizen. Zudem spielt das Schur-Komplement eine entscheidende Rolle bei der Formulierung und Analyse von Konditionierungsproblemen in der numerischen Mathematik.

Protein-Kristallographie-Optimierung

Die Protein-Kristallographie-Refinement ist ein entscheidender Schritt in der strukturellen Biologie, der darauf abzielt, die Qualität und Genauigkeit der aus Kristallstrukturdaten gewonnenen Modelle zu verbessern. Nach der ersten Lösung der Struktur wird ein anfängliches Modell erstellt, das dann durch verschiedene Refinement-Techniken optimiert wird. Dabei werden die Unterschiede zwischen den experimentell beobachteten und den berechneten Röntgenbeugungsmustern minimiert. Dies geschieht häufig durch die Anpassung von Atomen, die Verbesserung der Geometrie und die Minimierung von Energie. Typische Verfahren sind das Least Squares Refinement, bei dem der Unterschied zwischen den beobachteten und vorhergesagten Intensitäten minimiert wird, sowie die Verwendung von B-Faktoren, um die thermische Bewegung von Atomen zu berücksichtigen. Letztendlich resultiert dieser Prozess in einer verfeinerten Struktur, die ein genaueres Bild der räumlichen Anordnung von Atomen im Protein vermittelt.

Trie-Raumkomplexität

Die Raumkomplexität eines Tries (auch Präfixbaum genannt) hängt von der Anzahl der gespeicherten Wörter und der Länge der längsten Zeichenkette ab. Ein Trie verwendet Knoten, um jedes Zeichen eines Wortes zu repräsentieren, was bedeutet, dass die Anzahl der Knoten in einem Trie im schlimmsten Fall proportional zur Gesamtanzahl der Zeichen in allen Wörtern ist. Wenn wir nnn als die Anzahl der gespeicherten Wörter und mmm als die maximale Länge eines Wortes definieren, beträgt die Raumkomplexität im schlimmsten Fall O(n⋅m)O(n \cdot m)O(n⋅m).

Zusätzlich kann die Raumkomplexität durch den Grad des Tries beeinflusst werden, da jeder Knoten eine Sammlung von Zeigern auf seine Kindknoten hat. Wenn der Trie beispielsweise für das englische Alphabet verwendet wird, hat jeder Knoten bis zu 26 Kinder, was die Speicherkosten erhöhen kann. Daher ist es wichtig, die Struktur und den Einsatz des Tries zu berücksichtigen, um die Effizienz der Speicherverwendung zu optimieren.

Endogene Wachstumstheorie

Die endogene Wachstumstheorie ist ein Konzept in der Wirtschaftswissenschaft, das erklärt, wie wirtschaftliches Wachstum aus inneren Faktoren einer Volkswirtschaft resultiert, anstatt von externen Einflüssen. Sie hebt die Rolle von Technologie, Innovation und Bildung hervor, die als Treiber für langfristiges Wachstum dienen. Im Gegensatz zur klassischen Wachstumstheorie, die annehmend ist, dass technologische Fortschritte exogen sind, argumentiert die endogene Wachstumstheorie, dass Investitionen in Humankapital und Forschung & Entwicklung direkt zur Produktivität und damit zum Wachstum beitragen.

Ein zentrales Modell in der endogenen Wachstumstheorie ist das AK-Modell, bei dem die Produktionsfunktion als linear in Kapital dargestellt wird. Dies bedeutet, dass die Produktion YYY durch die Gleichung Y=A⋅KY = A \cdot KY=A⋅K beschrieben werden kann, wobei AAA den technologischen Fortschritt und KKK das Kapital darstellt. Die Theorie betont, dass höhere Investitionen in Bildung und Forschung die Fähigkeit einer Volkswirtschaft verbessern, neue Technologien zu entwickeln, was zu einem nachhaltigen Wachstum führt.

Dijkstra vs. Bellman-Ford

Dijkstra- und Bellman-Ford-Algorithmen sind zwei grundlegende Methoden zur Berechnung der kürzesten Wege in einem Graphen. Dijkstra ist effizienter und eignet sich hervorragend für Graphen mit nicht-negativen Gewichtungen, da er eine Zeitkomplexität von O((V+E)log⁡V)O((V + E) \log V)O((V+E)logV) hat, wobei VVV die Anzahl der Knoten und EEE die Anzahl der Kanten ist. Im Gegensatz dazu kann der Bellman-Ford-Algorithmus auch mit Graphen umgehen, die negative Gewichtungen enthalten, während seine Zeitkomplexität bei O(V⋅E)O(V \cdot E)O(V⋅E) liegt. Ein entscheidender Unterschied ist, dass Dijkstra keine negativen Zyklen erkennen kann, was zu falschen Ergebnissen führen kann, während Bellman-Ford in der Lage ist, solche Zyklen zu identifizieren und entsprechend zu handeln. Somit ist die Wahl zwischen diesen Algorithmen von den spezifischen Anforderungen des Problems abhängig, insbesondere in Bezug auf die Gewichtungen der Kanten im Graphen.

Verhaltensanalyse von Verbrauchern

Die Consumer Behavior Analysis beschäftigt sich mit dem Verständnis der Entscheidungen und Verhaltensweisen von Konsumenten beim Kauf von Produkten und Dienstleistungen. Diese Analyse berücksichtigt verschiedene Faktoren wie psychologische, soziologische und ökonomische Einflüsse, die das Kaufverhalten prägen. Zu den häufig untersuchten Aspekten gehören die Wahrnehmung von Marken, die Motivation hinter Kaufentscheidungen und die Auswirkungen von Werbung.

Ein zentrales Ziel dieser Analyse ist es, Unternehmen dabei zu unterstützen, ihre Marketingstrategien zu optimieren, indem sie ein besseres Verständnis für die Bedürfnisse und Wünsche ihrer Zielgruppe entwickeln. Methoden zur Analyse des Konsumentenverhaltens können Umfragen, Fokusgruppen und Datenanalysen umfassen, die es ermöglichen, Trends und Muster im Kaufverhalten zu identifizieren. Durch die Anwendung dieser Erkenntnisse können Unternehmen ihre Produkte und Dienstleistungen gezielt anpassen und somit ihre Wettbewerbsfähigkeit erhöhen.