Burnside’s Lemma ist ein wichtiges Werkzeug in der Gruppentheorie und der Kombinatorik, das hilft, die Anzahl der Äquivalenzklassen unter einer Gruppenaktion zu bestimmen. Insbesondere wird es verwendet, um die Anzahl der verschiedenen Objekte zu zählen, die durch Symmetrien oder Transformationen in einer bestimmten Struktur erzeugt werden. Die Grundidee ist, die Wirkung einer Gruppe auf einer Menge zu analysieren, indem man die Fixpunkte der Elemente der Gruppe betrachtet.
Die Formel lautet:
Hierbei ist die Anzahl der Äquivalenzklassen, die Ordnung der Gruppe und die Anzahl der Elemente in , die von der Gruppe unverändert bleiben. Anwendungen finden sich in der Zählung von Symmetrie-Klassen in der Geometrie, beim Zählen von farbigen Objekten oder beim Klassifizieren von Graphen. Burnside’s Lemma ist besonders nützlich, wenn es darum geht, redundante Zählungen durch Symmetrien zu vermeiden.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.