StudierendeLehrende

Cholesky Decomposition

Die Cholesky-Zerlegung ist eine mathematische Methode zur Zerlegung einer positiv definiten Matrix AAA in das Produkt einer unteren Dreiecksmatrix LLL und ihrer Transponierten LTL^TLT. Dies wird dargestellt als:

A=LLTA = LL^TA=LLT

Diese Zerlegung ist besonders nützlich in der numerischen Mathematik, da sie die Lösung von Gleichungssystemen der Form Ax=bAx = bAx=b vereinfacht. Anstatt die Matrix AAA direkt zu invertieren, kann man zuerst die Gleichung in zwei Schritte zerlegen: Ly=bLy = bLy=b und danach LTx=yL^T x = yLTx=y. Die Cholesky-Zerlegung ist effizienter als andere Methoden, wie die LU-Zerlegung, insbesondere für große Matrizen. Zudem reduziert sie die Rechenzeit und den Speicherbedarf, was sie zu einem wertvollen Werkzeug in der Statistik, Optimierung und maschinellem Lernen macht.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Überschalldüsen

Supersonic-Düsen sind spezielle Vorrichtungen, die dazu dienen, den Luftstrom auf Geschwindigkeiten über der Schallgeschwindigkeit zu beschleunigen. Diese Düsen nutzen den Düsen-Effekt, bei dem die Querschnittsfläche der Düse zuerst verengt und dann verbreitert wird, um die Strömungsgeschwindigkeit zu erhöhen. Wenn die Strömung durch die enge Stelle der Düse (Entlastungszone) tritt, sinkt der Druck und die Geschwindigkeit steigt, wodurch die Luft supersonisch wird.

Die grundlegende Formel, die das Verhalten von Gasen in solchen Düsen beschreibt, ist die Kontinuitätsgleichung kombiniert mit der Energieerhaltung. Bei idealen Bedingungen kann der Druckabfall ΔP\Delta PΔP in einer Supersonic-Düse durch die Beziehung P1/P2=(1+γ−12M2)γγ−1P_1 / P_2 = (1 + \frac{\gamma - 1}{2} M^2)^{\frac{\gamma}{\gamma - 1}}P1​/P2​=(1+2γ−1​M2)γ−1γ​ beschrieben werden, wobei P1P_1P1​ und P2P_2P2​ die Druckwerte vor und nach der Düse sind, γ\gammaγ das Verhältnis der spezifischen Wärmen ist und MMM die Mach-Zahl darstellt.

Supersonic-Düsen finden Anwendung in der Luft- und Raumfahrttechnik, insbesondere in Raketenantr

Exciton-Polariton-Kondensation

Die Exciton-Polariton-Kondensation ist ein faszinierendes Phänomen, das in Halbleitermaterialien auftritt, wenn Licht und Materie in einer Weise koppeln, dass sie gemeinsame Eigenschaften entwickeln. Exciton-Polariton sind quasiteilchen, die aus der Wechselwirkung von Excitonen (gebundenen Elektron-Loch-Paaren) und Photonen entstehen. Bei geeigneten Bedingungen, wie niedrigen Temperaturen und hoher Lichtintensität, können diese Polaritonen in einen kollapsierenden Zustand übergehen, ähnlich wie bei der Bose-Einstein-Kondensation. In diesem Zustand zeigen sie kollektive Eigenschaften und können makroskopische Quantenzustände bilden. Die Entstehung von Exciton-Polariton-Kondensaten hat bedeutende Implikationen für die Entwicklung von quantum optischen und nanophotonischen Technologien, da sie das Potenzial bieten, neuartige optoelektronische Geräte zu entwickeln.

Np-schwere Probleme

Np-Hard Probleme sind eine Klasse von Problemen in der Informatik, die als besonders schwierig gelten. Ein Problem wird als Np-Hard bezeichnet, wenn es mindestens so schwierig ist wie das schwierigste Problem in der Klasse NP (Nichtdeterministische Polynomialzeit). Das bedeutet, dass, selbst wenn wir die Lösung für ein Np-Hard Problem kennen, es im Allgemeinen nicht möglich ist, diese Lösung effizient zu überprüfen oder zu berechnen. Wichtige Merkmale von Np-Hard Problemen sind:

  • Sie können nicht in polynomialer Zeit gelöst werden (es sei denn, P = NP).
  • Sie sind oft optimierungsbasiert, wie z.B. das Travelling-Salesman-Problem oder das Rucksackproblem.
  • Lösungen für Np-Hard Probleme können durch heuristische oder approximative Ansätze gefunden werden, die jedoch nicht garantieren, die optimale Lösung zu finden.

Zusammenfassend lässt sich sagen, dass Np-Hard Probleme eine zentrale Herausforderung in der theoretischen Informatik darstellen und signifikante Auswirkungen auf reale Anwendungen haben.

Phillips-Phase

Die Phillips Phase ist ein Konzept aus der Wirtschaftswissenschaft, das sich mit der Beziehung zwischen Inflation und Arbeitslosigkeit beschäftigt. Es basiert auf der Beobachtung, dass es oft eine inverse Beziehung zwischen diesen beiden Variablen gibt: Wenn die Arbeitslosigkeit niedrig ist, neigen die Löhne und damit auch die Preise dazu, zu steigen, was zu einer höheren Inflation führt. Umgekehrt kann eine hohe Arbeitslosigkeit zu einem Rückgang der Inflation oder sogar zu Deflation führen.

Diese Beziehung wurde erstmals von A.W. Phillips in den 1950er Jahren beschrieben und als Phillips-Kurve bekannt. Mathematisch kann dies durch die Gleichung

πt=πt−1−β(ut−u∗)\pi_t = \pi_{t-1} - \beta (u_t - u^*)πt​=πt−1​−β(ut​−u∗)

ausgedrückt werden, wobei πt\pi_tπt​ die Inflationsrate, utu_tut​ die Arbeitslosenquote und u∗u^*u∗ die natürliche Arbeitslosenquote darstellt. In der Phillips Phase wird diskutiert, wie sich diese Dynamik im Zeitverlauf ändern kann, insbesondere in Reaktion auf wirtschaftliche Schocks oder geldpolitische Maßnahmen.

Aktuator-Dynamik

Die Aktuatordynamik beschreibt das Verhalten und die Reaktionen von Aktuatoren, die mechanische Bewegungen in Systemen erzeugen. Aktuatoren sind entscheidend in der Automatisierungstechnik, Robotik und anderen technischen Anwendungen, da sie elektrische, hydraulische oder pneumatische Energie in mechanische Bewegung umwandeln. Die Dynamik dieser Systeme wird durch verschiedene Faktoren beeinflusst, darunter Masse, Reibung und Federkonstanten.

Ein zentrales Ziel der Aktuatordynamik ist es, präzise Modelle zu entwickeln, die das Verhalten des Aktuators unter verschiedenen Bedingungen vorhersagen können. Mathematisch können diese Systeme oft durch Differentialgleichungen beschrieben werden, die die Beziehung zwischen Eingangs- und Ausgangsgrößen darstellen. Zum Beispiel könnte ein einfaches Modell für einen elektrischen Aktuator durch die folgende Gleichung dargestellt werden:

τ=Jdωdt+bω+Kθ\tau = J \frac{d\omega}{dt} + b\omega + K \thetaτ=Jdtdω​+bω+Kθ

Hierbei ist τ\tauτ das Moment, JJJ das Trägheitsmoment, bbb die Dämpfung, KKK die Federkonstante, ω\omegaω die Winkelgeschwindigkeit und θ\thetaθ der Winkel. Diese Gleichung hilft Ingenieuren, das dynamische Verhalten von Aktuatoren besser zu verstehen und zu optimieren.

Higgs-Boson

Das Higgs-Boson ist ein fundamentales Teilchen in der Teilchenphysik, das im Rahmen des Standardmodells eine zentrale Rolle spielt. Es wurde 2012 am Large Hadron Collider (LHC) am CERN nachgewiesen und ist entscheidend für das Verständnis, wie Teilchen ihre Masse erhalten. Der Mechanismus, der diesem Prozess zugrunde liegt, wird als Higgs-Mechanismus bezeichnet und basiert auf dem Higgs-Feld, das den gesamten Raum durchdringt. Teilchen, die mit diesem Feld wechselwirken, erhalten eine Masse, während andere, wie das Photon, masselos bleiben.

Die Entdeckung des Higgs-Bosons war ein Meilenstein in der Physik, da es die letzte fehlende Komponente des Standardmodells darstellt. Der Nachweis des Higgs-Bosons bestätigt die theoretischen Vorhersagen von Physikern wie Peter Higgs und anderen, die in den 1960er Jahren das Konzept des Higgs-Feldes entwickelten.