StudierendeLehrende

Coase Theorem

Das Coase Theorem ist ein Konzept aus der Wirtschaftswissenschaft, das von dem Ökonomen Ronald Coase formuliert wurde. Es besagt, dass, wenn die Eigentumsrechte klar definiert sind und Transaktionskosten niedrig sind, die Parteien unabhängig von der Verteilung der Rechte zu einer effizienten Lösung kommen können, die den Gesamtnutzen maximiert. Das bedeutet, dass private Verhandlungen zwischen den betroffenen Parteien zu einer optimalen Allokation von Ressourcen führen können, ohne dass staatliche Eingriffe notwendig sind.

Ein Beispiel könnte eine Situation sein, in der ein Fabrikbesitzer Schadstoffe in einen Fluss leitet, der von Fischern genutzt wird. Wenn die Fischer das Recht haben, den Fluss zu schützen, können sie mit dem Fabrikbesitzer verhandeln, um eine Entschädigung zu erhalten oder die Verschmutzung zu reduzieren. Umgekehrt, wenn der Fabrikbesitzer die Rechte hat, könnten die Fischer möglicherweise eine Zahlung anbieten, um die Verschmutzung zu stoppen. In beiden Fällen führt die Verhandlung zu einer effizienten Lösung, solange die Transaktionskosten gering sind. Das Theorem unterstreicht die Bedeutung von klaren Eigentumsrechten und niedrigen Transaktionskosten für die Effizienz des Marktes.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Jacobi-Matrix

Die Jacobi-Matrix ist ein fundamentales Konzept in der multivariaten Analysis, das die Ableitungen einer vektoriellen Funktion beschreibt. Sie stellt eine Matrix dar, die die partiellen Ableitungen einer Funktion mit mehreren Variablen in Bezug auf ihre Eingangswerte enthält. Wenn wir eine Funktion f:Rn→Rm\mathbf{f} : \mathbb{R}^n \rightarrow \mathbb{R}^mf:Rn→Rm betrachten, dann ist die Jacobi-Matrix JJJ gegeben durch:

J=[∂f1∂x1∂f1∂x2⋯∂f1∂xn∂f2∂x1∂f2∂x2⋯∂f2∂xn⋮⋮⋱⋮∂fm∂x1∂fm∂x2⋯∂fm∂xn]J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}J=​∂x1​∂f1​​∂x1​∂f2​​⋮∂x1​∂fm​​​∂x2​∂f1​​∂x2​∂f2​​⋮∂x2​∂fm​​​⋯⋯⋱⋯​∂xn​∂f1​​∂xn​∂f2​​⋮∂xn​∂fm​​​​

Hierbei sind fif_ifi​ die Komponenten der

UCB-Algorithmus in Mehrarmigen Banditen

Der UCB-Algorithmus (Upper Confidence Bound) ist eine effektive Strategie zur Lösung des Multi-Armed Bandit-Problems, das in der Entscheidungsfindung und im maschinellen Lernen häufig vorkommt. Bei diesem Problem steht ein Agent vor der Wahl, aus mehreren Optionen (Armen) zu wählen, wobei jede Option eine unbekannte Belohnungsverteilung hat. Der UCB-Algorithmus verfolgt einen explorativen Ansatz, indem er sowohl die mittlere Belohnung jeder Option als auch die Unsicherheit über diese Schätzungen berücksichtigt.

Die zentrale Idee des UCB-Algorithmus besteht darin, eine obere Schranke für die geschätzte Belohnung jeder Option zu berechnen, die sowohl die bisherige Leistung als auch die Anzahl der Male, die die Option gewählt wurde, einbezieht. Diese Schranke wird wie folgt definiert:

UCBt(a)=X^t(a)+2ln⁡tNt(a)UCB_t(a) = \hat{X}_t(a) + \sqrt{\frac{2 \ln t}{N_t(a)}}UCBt​(a)=X^t​(a)+Nt​(a)2lnt​​

Hierbei ist X^t(a)\hat{X}_t(a)X^t​(a) die geschätzte durchschnittliche Belohnung der Option aaa zum Zeitpunkt ttt, Nt(a)N_t(a)Nt​(a) die Anzahl der Ziehungen von Option aaa, und ln⁡t\ln tlnt der natürliche Logarithmus von ttt. Der Agent wählt dann

Van’T Hoff

Der niederländische Chemiker Jacobus Henricus van 't Hoff (1852-1911) gilt als einer der Begründer der modernen Chemie und ist bekannt für seine Beiträge zur Thermodynamik und Kinetik chemischer Reaktionen. Er entwickelte das Konzept der chemischen Gleichgewichtszustände und formulierte das Van’t Hoff-Gesetz, das die Beziehung zwischen Temperatur und dem Gleichgewicht einer chemischen Reaktion beschreibt.

Seine bedeutendsten Arbeiten beinhalten die Einführung der Kinetik in die Chemie, insbesondere durch seine Theorie der reaktionellen Geschwindigkeiten. Zudem war er der erste, der die osmotischen Eigenschaften von Lösungen mathematisch beschrieb, was zur Entwicklung der modernen physikalischen Chemie führte. Van 't Hoff war auch ein Pionier in der Anwendung der Geometrischen Isomerie und der Stereochemie, was die Struktur von Molekülen und deren räumliche Anordnung betrifft. Seine Arbeiten und Entdeckungen haben die Chemie revolutioniert und werden bis heute in der Forschung und Industrie angewendet.

Crispr-basierte Genrepression

Crispr-basierte Genrepression ist eine Technik, die auf dem CRISPR-Cas9-System basiert, um die Expression spezifischer Gene zu hemmen. Anstatt das Genom zu schneiden, wie es bei der Genom-Editierung der Fall ist, wird ein modifiziertes Cas9-Protein verwendet, das als dCas9 (deactivated Cas9) bekannt ist. Dieses Protein kann an eine spezifische DNA-Sequenz binden, ohne sie zu schneiden, und blockiert so die Transkription des Zielgens. Die Effizienz der Genrepression kann durch die Kombination mit kleinen RNA-Molekülen, wie z. B. sgRNA (single guide RNA), erhöht werden, die gezielt die Bindungsstelle für das dCas9 ansteuern. Diese Methode hat vielversprechende Anwendungen in der Funktionsgenomik und in der Behandlung von Krankheiten, indem sie eine präzise Kontrolle über die Genexpression ermöglicht.

Flexible Perowskit-Photovoltaik

Flexible Perovskite-Photovoltaik ist eine innovative Technologie, die auf Perovskit-Materialien basiert, um Sonnenlicht in elektrische Energie umzuwandeln. Diese Materialien zeichnen sich durch ihre hohe Lichtabsorption und gute Elektronentransport-Eigenschaften aus, was zu einer hohen Effizienz bei der Umwandlung von Sonnenlicht führt. Im Gegensatz zu herkömmlichen Silizium-Solarzellen können flexible Perovskite-Module auf leichten und biegsamen Substraten hergestellt werden, wodurch sie vielseitig einsetzbar sind, z.B. in tragbaren Geräten oder auf gewölbten Oberflächen.

Ein weiterer Vorteil dieser Technologie ist die potenzielle Kostensenkung bei der Herstellung, da die Materialien oft einfacher und mit weniger Energieaufwand produziert werden können. Dennoch stehen flexible Perovskite-Photovoltaik-Anwendungen Herausforderungen gegenüber, insbesondere hinsichtlich der Stabilität und Langzeitbeständigkeit der Materialien unter realen Umweltbedingungen.

Quantitative Finanzrisikomodellierung

Quantitative Finance Risk Modeling bezieht sich auf die Anwendung mathematischer und statistischer Methoden zur Bewertung und Steuerung von finanziellen Risiken in Märkten und Institutionen. Ziel ist es, potenzielle Verluste zu quantifizieren und Strategien zu entwickeln, um diese Risiken zu minimieren. Zu den häufig verwendeten Modellen gehören Value-at-Risk (VaR), Stress-Testing und Monte-Carlo-Simulationen, die jeweils unterschiedliche Ansätze zur Risikomessung bieten.

Ein zentrales Konzept in der Risikoanalyse ist die Korrelation zwischen verschiedenen Finanzinstrumenten, die oft durch Matrizen wie die Kovarianzmatrix dargestellt werden kann. Mathematisch kann dies durch die Formel

Cov(X,Y)=E[(X−μX)(Y−μY)]Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]Cov(X,Y)=E[(X−μX​)(Y−μY​)]

ausgedrückt werden, wobei Cov(X,Y)Cov(X, Y)Cov(X,Y) die Kovarianz zwischen den Variablen XXX und YYY und EEE den Erwartungswert darstellt. Die präzise Modellierung von Risiken ermöglicht es Finanzinstituten, informierte Entscheidungen zu treffen und ihre Risikopositionen effektiv zu steuern.