StudierendeLehrende

Martingale Property

Die Martingale-Eigenschaft ist ein zentrales Konzept in der Wahrscheinlichkeitstheorie und der stochastischen Prozesse. Ein stochastischer Prozess XnX_nXn​ wird als Martingale bezeichnet, wenn die Bedingung erfüllt ist, dass der erwartete zukünftige Wert des Prozesses, gegeben alle vorherigen Werte, gleich dem aktuellen Wert ist. Mathematisch ausgedrückt bedeutet dies:

E[Xn+1∣X1,X2,…,Xn]=XnE[X_{n+1} | X_1, X_2, \ldots, X_n] = X_nE[Xn+1​∣X1​,X2​,…,Xn​]=Xn​

für alle nnn. Diese Eigenschaft impliziert, dass es keine systematischen Gewinne oder Verluste im Prozess gibt, wodurch der Prozess als "fair" gilt. Ein typisches Beispiel für einen Martingale-Prozess ist das Glücksspiel, bei dem die Einsätze in jedem Spiel unabhängig von den vorherigen Ergebnissen sind. In der Finanzmathematik wird die Martingale-Eigenschaft häufig verwendet, um die Preisbildung von Finanzinstrumenten zu modellieren.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Butterworth-Filter

Ein Butterworth-Filter ist ein Signalfilter, der dafür bekannt ist, eine maximale flache Frequenzantwort im Passband zu bieten. Er wurde entwickelt, um die Verzerrung in den Frequenzen, die durch den Filter hindurchgelassen werden, zu minimieren, was zu einer sehr gleichmäßigen Übertragungsfunktion führt. Der Übertragungsfunktionsverlauf eines Butterworth-Filters ist in der Regel so gestaltet, dass er in der Nähe der Grenzfrequenz ωc\omega_cωc​ abrupt abfällt, was bedeutet, dass Frequenzen oberhalb dieser Schwelle stark gedämpft werden.

Die mathematische Darstellung der Übertragungsfunktion H(s)H(s)H(s) eines Butterworth-Filters ist gegeben durch:

H(s)=11+(sωc)2nH(s) = \frac{1}{1 + \left( \frac{s}{\omega_c} \right)^{2n}}H(s)=1+(ωc​s​)2n1​

wobei nnn die Ordnung des Filters ist und ωc\omega_cωc​ die Grenzfrequenz darstellt. Butterworth-Filter finden breite Anwendung in der Signalverarbeitung, insbesondere in Audio- und Kommunikationssystemen, weil sie eine hervorragende Leistung bei der Filterung von Rauschen und Störungen bieten.

Suffixbaumkonstruktion

Die Konstruktion eines Suffixbaums ist ein entscheidender Schritt in der Textverarbeitung und der Algorithmusforschung. Ein Suffixbaum ist eine kompakte Datenstruktur, die alle Suffixe eines gegebenen Strings speichert und es ermöglicht, effizient nach Mustern zu suchen und verschiedene Textoperationen durchzuführen. Der Prozess beginnt mit der Auswahl eines Eingabestrings SSS und dem Hinzufügen eines speziellen Endsymbols, um die Suffixe korrekt zu terminieren.

Ein häufig verwendeter Algorithmus zur Konstruktion eines Suffixbaums ist der Ukkonen-Algorithmus, der in linearer Zeit O(n)O(n)O(n) arbeitet, wobei nnn die Länge des Strings ist. Der Algorithmus arbeitet iterativ und fügt Schritt für Schritt Suffixe hinzu, während er die Struktur des Baums dynamisch anpasst. Dies führt zu einer effizienten Speicherung und ermöglicht die schnelle Suche nach Substrings, die für Anwendungen in der Bioinformatik, der Datenkompression und der Informationssuche von Bedeutung sind.

Atomlagenabscheidung

Atomic Layer Deposition (ALD) ist ein präziser Beschichtungsprozess, der es ermöglicht, dünne Filme atomar kontrolliert abzulegen. Der Prozess beruht auf der sequenziellen chemischen Reaktion von gasförmigen Vorläufermaterialien, die schichtweise auf einer Substratoberfläche adsorbiert werden. Während der ALD-Phase wird eine Schicht in der Größenordnung von einem Atom oder Molekül abgeschieden, was zu hoher Gleichmäßigkeit und exzellenter Kontrolle über die Schichtdicke führt.

Die Hauptmerkmale von ALD sind:

  • Konformität: Der Prozess kann komplexe Geometrien gleichmäßig beschichten.
  • Präzision: Die Dicke der abgeschiedenen Schichten kann auf wenige Nanometer genau kontrolliert werden.
  • Vielfältige Anwendungen: ALD findet Anwendung in der Halbleiterindustrie, in der Optoelektronik und bei der Herstellung von Katalysatoren.

Insgesamt ist ALD eine Schlüsseltechnologie für die Entwicklung modernster Materialien und Geräte in verschiedenen Hochtechnologiebereichen.

Heap-Sort

Heap Sort ist ein effizienter Sortieralgorithmus, der auf der Datenstruktur Heap basiert, einem speziellen binären Baum. Der Algorithmus besteht aus zwei Hauptschritten: Zunächst wird ein Max-Heap aus den unsortierten Daten erstellt, wobei das größte Element an der Wurzel des Heaps positioniert wird. Danach wird das größte Element (die Wurzel) entfernt und am Ende des Array platziert, gefolgt von der Wiederherstellung der Heap-Eigenschaft für die verbleibenden Elemente. Dieser Vorgang wird wiederholt, bis alle Elemente sortiert sind.

Die Zeitkomplexität von Heap Sort beträgt O(nlog⁡n)O(n \log n)O(nlogn) im schlimmsten Fall, was ihn zu einem stabilen und zuverlässigen Algorithmus für große Datenmengen macht. Zudem benötigt er nur O(1)O(1)O(1) zusätzlichen Speicher, da er in-place arbeitet.

Überlappende Generationen Modell

Das Overlapping Generations Model (OLG-Modell) ist ein fundamentales Konzept in der modernen Wirtschaftstheorie, das die Interaktionen zwischen verschiedenen Generationen in einer Volkswirtschaft untersucht. Es geht davon aus, dass Individuen in verschiedenen Lebensphasen leben und wirtschaftliche Entscheidungen treffen, die sowohl ihre eigene Generation als auch die nachfolgende Generation beeinflussen. In diesem Modell arbeiten ältere und jüngere Generationen gleichzeitig, was bedeutet, dass es Überschneidungen in den Zeiträumen gibt, in denen die Generationen aktiv sind.

Ein zentrales Merkmal des OLG-Modells ist, dass es die Dynamik von Ersparnissen und Investitionen über Zeit betrachtet. Wirtschaftliche Entscheidungen, wie das Sparen für den Ruhestand oder Investitionen in Bildung, haben langfristige Auswirkungen auf die wirtschaftliche Entwicklung. Mathematisch wird das Modell häufig durch Gleichungen dargestellt, die die optimale Konsum- und Sparstrategie der Individuen beschreiben, typischerweise in Form von Nutzenmaximierung unter Berücksichtigung von Budgetrestriktionen:

U(ct)+βU(ct+1)U(c_t) + \beta U(c_{t+1})U(ct​)+βU(ct+1​)

Hierbei steht U(ct)U(c_t)U(ct​) für den Nutzen des Konsums zum Zeitpunkt ttt, ct+1c_{t+1}ct+1​ für den Konsum der nächsten Generation und β\betaβ für den Diskontfaktor, der die

Euler-Lagrange

Die Euler-Lagrange-Gleichung ist ein fundamentales Konzept in der Variationsrechnung, das zur Ableitung der Bewegungsgleichungen in der klassischen Mechanik verwendet wird. Sie beschreibt, wie man die Funktion L(q,q˙,t)L(q, \dot{q}, t)L(q,q˙​,t), die als Lagrangian bezeichnet wird, minimieren kann, um die Trajektorien eines Systems zu bestimmen. Hierbei steht qqq für die generalisierten Koordinaten, q˙\dot{q}q˙​ für die Zeitableitung dieser Koordinaten und ttt für die Zeit.

Die allgemeine Form der Euler-Lagrange-Gleichung lautet:

ddt(∂L∂q˙)−∂L∂q=0\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0dtd​(∂q˙​∂L​)−∂q∂L​=0

Diese Gleichung stellt sicher, dass die Variation der Wirkung S=∫L dtS = \int L \, dtS=∫Ldt extrem ist, was bedeutet, dass die physikalischen Bahnen eines Systems die Extremalwerte der Wirkung annehmen. Die Anwendung der Euler-Lagrange-Gleichung ist ein mächtiges Werkzeug, um die Dynamik komplexer Systeme zu analysieren, insbesondere wenn die Kräfte nicht direkt bekannt sind.