Die Martingale-Eigenschaft ist ein zentrales Konzept in der Wahrscheinlichkeitstheorie und der stochastischen Prozesse. Ein stochastischer Prozess wird als Martingale bezeichnet, wenn die Bedingung erfüllt ist, dass der erwartete zukünftige Wert des Prozesses, gegeben alle vorherigen Werte, gleich dem aktuellen Wert ist. Mathematisch ausgedrückt bedeutet dies:
für alle . Diese Eigenschaft impliziert, dass es keine systematischen Gewinne oder Verluste im Prozess gibt, wodurch der Prozess als "fair" gilt. Ein typisches Beispiel für einen Martingale-Prozess ist das Glücksspiel, bei dem die Einsätze in jedem Spiel unabhängig von den vorherigen Ergebnissen sind. In der Finanzmathematik wird die Martingale-Eigenschaft häufig verwendet, um die Preisbildung von Finanzinstrumenten zu modellieren.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.