StudierendeLehrende

Bagehot’S Rule

Bagehot’s Rule ist ein Konzept aus der Finanzwirtschaft, das nach dem britischen Ökonomen Walter Bagehot benannt ist. Es besagt, dass in Zeiten finanzieller Krisen oder Liquiditätsengpässen Zentralbanken dazu neigen sollten, Banken zu unterstützen, indem sie ihnen Liquidität zur Verfügung stellen. Dabei sollten die Zentralbanken alle solventen Banken unterstützen, jedoch nur zu hohen Zinsen, um moralisches Risiko zu vermeiden und sicherzustellen, dass diese Banken sich aktiv um ihre Stabilität bemühen.

Die Grundannahme ist, dass die Bereitstellung von Liquidität zu höheren Zinsen dazu beiträgt, dass Banken ihre Kreditvergabe sorgfältiger steuern und die Risiken besser managen. Bagehot betonte, dass dies nicht nur den betroffenen Banken hilft, sondern auch das gesamte Finanzsystem stabilisiert, indem es Vertrauen in die Liquidität der Banken schafft. Ein weiterer zentraler Punkt ist, dass bei der Unterstützung der Banken die Zentralbank sicherstellen sollte, dass die bereitgestellten Mittel nur für kurzfristige Liquiditätsprobleme verwendet werden und nicht zur Rettung von langfristig insolventen Banken.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Endogene Wachstumstheorie

Die endogene Wachstumstheorie ist ein Konzept in der Wirtschaftswissenschaft, das erklärt, wie wirtschaftliches Wachstum aus inneren Faktoren einer Volkswirtschaft resultiert, anstatt von externen Einflüssen. Sie hebt die Rolle von Technologie, Innovation und Bildung hervor, die als Treiber für langfristiges Wachstum dienen. Im Gegensatz zur klassischen Wachstumstheorie, die annehmend ist, dass technologische Fortschritte exogen sind, argumentiert die endogene Wachstumstheorie, dass Investitionen in Humankapital und Forschung & Entwicklung direkt zur Produktivität und damit zum Wachstum beitragen.

Ein zentrales Modell in der endogenen Wachstumstheorie ist das AK-Modell, bei dem die Produktionsfunktion als linear in Kapital dargestellt wird. Dies bedeutet, dass die Produktion YYY durch die Gleichung Y=A⋅KY = A \cdot KY=A⋅K beschrieben werden kann, wobei AAA den technologischen Fortschritt und KKK das Kapital darstellt. Die Theorie betont, dass höhere Investitionen in Bildung und Forschung die Fähigkeit einer Volkswirtschaft verbessern, neue Technologien zu entwickeln, was zu einem nachhaltigen Wachstum führt.

Grüne Funktion

Die Green’sche Funktion ist ein fundamentales Konzept in der Theorie der Differentialgleichungen und wird häufig in der Physik und Ingenieurwissenschaften verwendet, um Probleme mit Randbedingungen zu lösen. Sie stellt eine spezielle Lösung einer inhomogenen linearen Differentialgleichung dar und ermöglicht es, die Lösung für beliebige Quellen zu konstruieren. Mathematisch wird die Green’sche Funktion G(x,x′)G(x, x')G(x,x′) so definiert, dass sie die Gleichung

L[G(x,x′)]=δ(x−x′)L[G(x, x')] = \delta(x - x')L[G(x,x′)]=δ(x−x′)

erfüllt, wobei LLL ein Differentialoperator und δ\deltaδ die Dirac-Delta-Funktion ist. Die Green’sche Funktion kann verwendet werden, um die Lösung u(x)u(x)u(x) einer Differentialgleichung durch die Beziehung

u(x)=∫G(x,x′)f(x′) dx′u(x) = \int G(x, x') f(x') \, dx'u(x)=∫G(x,x′)f(x′)dx′

herzustellen, wobei f(x)f(x)f(x) die Quelle oder die inhomogene Terme darstellt. Diese Methode ist besonders nützlich, da sie die Lösung komplexer Probleme auf die Analyse von einfacheren, gut verstandenen Funktionen reduziert.

H-Infinity robuste Regelung

H-Infinity Robust Control ist ein Ansatz zur Regelungstechnik, der sich auf die Entwicklung von Regelungssystemen konzentriert, die gegenüber Unsicherheiten und Störungen in dynamischen Systemen robust sind. Der Hauptfokus liegt auf der Minimierung des maximalen Einflusses der Störungen auf das System, was mathematisch durch die Minimierung einer speziellen Norm, der H∞H_\inftyH∞​-Norm, erreicht wird. Dies bedeutet, dass der Regler so gestaltet wird, dass er die worst-case Auswirkungen von Unsicherheiten, wie Modellfehler oder äußere Störungen, berücksichtigt.

Ein typisches Ziel im H-Infinity Ansatz ist es, eine Übertragungsfunktion T(s)T(s)T(s) zu finden, die die Beziehung zwischen Eingangs- und Ausgangssignalen des Systems beschreibt und gleichzeitig die Bedingung erfüllt:

∥T∥H∞<γ\| T \|_{H_\infty} < \gamma∥T∥H∞​​<γ

wobei γ\gammaγ eine vorgegebene Schranke darstellt. Der Vorteil des H-Infinity Ansatzes liegt in seiner Fähigkeit, die Stabilität und Leistung des Regelungssystems auch unter ungünstigen Bedingungen zu gewährleisten, wodurch er in vielen Anwendungen in der Luftfahrt, Robotik und Automobiltechnik weit verbreitet ist.

Adaptive Neuro-Fuzzy

Adaptive Neuro-Fuzzy (ANFIS) ist ein hybrides Modell, das die Vorteile von neuronalen Netzwerken und fuzzy Logik kombiniert, um komplexe Systeme zu modellieren und Vorhersagen zu treffen. Es nutzt die Fähigkeit von neuronalen Netzwerken, Muster in Daten zu erkennen, und integriert gleichzeitig die Unsicherheit und Vagheit, die durch fuzzy Logik beschrieben werden. ANFIS besteht aus einer fuzzy Regelbasis, die durch Lernalgorithmen angepasst wird, wodurch das System in der Lage ist, sich an neue Daten anzupassen. Die Hauptkomponenten von ANFIS sind:

  • Fuzzifizierung: Umwandlung von Eingabewerten in fuzzy Mengen.
  • Regelung: Anwendung von fuzzy Regeln zur Verarbeitung der Eingaben.
  • Defuzzifizierung: Umwandlung der fuzzy Ausgaben in präzise Werte.

Diese Technik wird häufig in Bereichen wie Datenanalyse, Mustererkennung und Systemsteuerung eingesetzt, da sie eine effektive Möglichkeit bietet, Unsicherheit und Komplexität zu handhaben.

Smart Grids

Smart Grids sind moderne, digitale Stromnetze, die fortschrittliche Kommunikationstechnologien und Automatisierung nutzen, um die Effizienz, Zuverlässigkeit und Nachhaltigkeit der Energieversorgung zu erhöhen. Sie integrieren verschiedene Energiequellen, einschließlich erneuerbarer Energien wie Solar- und Windkraft, und ermöglichen eine bidirektionale Kommunikation zwischen Energieanbietern und Verbrauchern. Dies führt zu einer besseren Laststeuerung, die es ermöglicht, den Energieverbrauch in Echtzeit anzupassen und Engpässe zu vermeiden.

Ein zentrales Merkmal von Smart Grids ist die Nutzung von Intelligent Metering und Sensoren, die es ermöglichen, Daten über den Energieverbrauch zu sammeln und auszuwerten. Diese Daten können dann verwendet werden, um individuelle Verbrauchsmuster zu analysieren und Energieeffizienz zu fördern. Zudem spielt die Integration von Elektromobilität und Speichersystemen eine wichtige Rolle, um die Flexibilität und Resilienz des Stromnetzes zu erhöhen.

Kernel-PCA

Kernel Principal Component Analysis (Kernel PCA) ist eine Erweiterung der klassischen Principal Component Analysis (PCA), die es ermöglicht, nichtlineare Strukturen in hochdimensionalen Daten zu erfassen. Während die traditionelle PCA nur lineare Zusammenhänge berücksichtigt, verwendet Kernel PCA einen Kernel-Trick, um die Daten in einen höherdimensionalen Raum zu transformieren, in dem die Daten linear separierbar sind. Der wichtigste Vorteil von Kernel PCA ist, dass es die Herkunft der Daten nicht verändert und dennoch eine effektive Reduktion der Dimensionen ermöglicht.

Mathematisch wird dies durch die Berechnung der Eigenwerte und Eigenvektoren der sogenannten Gramm-Matrix realisiert, die aus den paarweisen Kernels der Datenpunkte besteht. Der Kernels kann verschiedene Formen annehmen, wie beispielsweise den polynomialen oder den RBF-Kern (Radial Basis Function). Zusammengefasst ist Kernel PCA ein leistungsfähiges Werkzeug, um komplexe Datenstrukturen zu analysieren und zu visualisieren, insbesondere in Bereichen wie Bildverarbeitung oder Genomforschung.