Der Compton-Effekt beschreibt die Veränderung der Wellenlänge von Photonen, wenn sie mit Elektronen streuen. Dieser Effekt wurde 1923 von dem Physiker Arthur H. Compton entdeckt und bestätigte die Teilchen-Natur von Licht. Bei der Kollision eines Photons mit einem ruhenden Elektron wird ein Teil der Energie des Photons auf das Elektron übertragen, was zu einer Erhöhung der Wellenlänge des gestreuten Photons führt. Die Beziehung zwischen der Änderung der Wellenlänge und dem Streuwinkel des Photons wird durch die Formel gegeben:
wobei das Plancksche Wirkungsquantum, die Masse des Elektrons und die Lichtgeschwindigkeit ist. Der Compton-Effekt zeigt, dass Licht sowohl als Welle als auch als Teilchen betrachtet werden kann, was einen wichtigen Beitrag zur Quantenmechanik leistet.
Das Cosmological Constant Problem bezieht sich auf die Diskrepanz zwischen der theoretischen Vorhersage der Energie-Dichte des Vakuums, die durch die Quantenfeldtheorie gegeben ist, und den beobachteten Werten dieser Energie-Dichte im Universum. Laut Quantenfeldtheorie sollte die Vakuumenergie extrem groß sein, während astronomische Messungen eine viel kleinere Energie-Dichte von etwa nahelegen. Diese Differenz von etwa Größenordnungen ist eine der größten ungelösten Herausforderungen in der modernen Physik.
Zusätzlich stellt sich die Frage, wie diese Vakuumenergie das Beschleunigungsphänomen des Universums beeinflusst, das durch die Beobachtungen von Supernovae und die kosmische Hintergrundstrahlung gestützt wird. Eine mögliche Lösung könnte in der Einführung neuer physikalischer Prinzipien oder in der Modifikation der bestehenden Theorien liegen, wie zum Beispiel der Dunkle Energie oder der Stringtheorie.
Das VAR-Modell (Vector Autoregressive Model) ist ein statistisches Modell, das in der Zeitreihenanalyse verwendet wird, um die Beziehungen zwischen mehreren Variablen zu untersuchen. Es modelliert die dynamischen Interaktionen zwischen mehreren Zeitreihen, indem es jede Variable als eine lineare Funktion ihrer eigenen vorherigen Werte sowie der vorherigen Werte aller anderen Variablen beschreibt. Mathematisch wird das VAR-Modell für Variablen wie folgt formuliert:
Hierbei ist ein Vektor der Zeitreihen, sind die Koeffizientenmatrizen, und ist der Fehlerterm. Das VAR-Modell ist besonders nützlich, um Schocks und Impulse in den Variablen zu analysieren und Vorhersagen zu treffen. Ein wichtiger Aspekt des VAR-Modells ist seine Fähigkeit, die Dynamiken zwischen Variablen zu erfassen, was es zu einem wertvollen Werkzeug in der Wirtschaftsforschung und der Finanzanalyse macht.
Rational Bubbles beziehen sich auf Situationen in Finanzmärkten, in denen die Preise von Vermögenswerten über ihren intrinsischen Wert hinaus steigen, basierend auf der Erwartung, dass zukünftige Käufer bereit sind, noch höhere Preise zu zahlen. Diese Preisblasen entstehen oft, weil Investoren rationale Entscheidungen treffen und die Möglichkeit, von einem Preisanstieg zu profitieren, als attraktiver empfinden als den tatsächlichen Wert des Vermögenswertes. Die Theorie hinter Rational Bubbles kann durch das Konzept der erwarteten zukünftigen Preise beschrieben werden, wobei Investoren ihre Kaufentscheidungen auf der Annahme stützen, dass andere Investoren ebenfalls kaufen werden, um von den steigenden Preisen zu profitieren.
Mathematisch kann dies durch die Gleichung für den Preis eines Vermögenswertes dargestellt werden:
wobei die erwartete zukünftige Preisentwicklung, die Dividende und der Diskontsatz ist. Rational Bubbles können jedoch nicht ewig bestehen bleiben und enden oft abrupt, wenn die Marktteilnehmer realisieren, dass die Preise nicht durch fundamentale Werte gestützt sind, was zu einem plötzlichen Preisverfall führt.
Gauge Invariance ist ein fundamentales Konzept in der theoretischen Physik, das besagt, dass die Beschreibung eines physikalischen Systems unabhängig von bestimmten Wahlfreiheiten, den sogenannten Gauge-Freiheiten, ist. Dies bedeutet, dass verschiedene mathematische Darstellungen eines physikalischen Systems, die durch eine geeignete Transformation verbunden sind, zu den gleichen physikalischen Vorhersagen führen. Zum Beispiel in der Elektrodynamik ist die Wahl des potenziellen Feldes, das zur Beschreibung des elektrischen und magnetischen Feldes verwendet wird, eine Gauge-Freiheit.
Mathematisch lässt sich dies oft durch die Transformation eines Feldes darstellen, wobei die physikalischen Gesetze in der Form invariant bleiben:
Hierbei ist eine beliebige Funktion der Raum-Zeit-Koordinaten. Gauge Invariance spielt eine zentrale Rolle in der Quantenfeldtheorie und ist entscheidend für die Entwicklung der Standardmodelle der Teilchenphysik, da sie die Erhaltung von Energie, Impuls und anderen physikalischen Größen sichert.
Die Riccati-Gleichung ist ein zentrales Element in der optimalen Steuerungstheorie, insbesondere bei der Lösung von Problemen mit quadratischen Kostenfunktionen. Sie beschreibt die Beziehung zwischen dem Zustand eines dynamischen Systems und der optimalen Steuerung, die angewendet werden sollte, um die Kosten zu minimieren. In ihrer klassischen Form wird die Riccati-Gleichung oft als
formuliert, wobei die Lösung der Gleichung ist, und die Systemmatrizen, die Kostenmatrix für den Zustand und die Kostenmatrix für die Steuerung darstellen. Die Lösung ist entscheidend für die Bestimmung der optimalen Rückführung der Steuerung, die typischerweise in der Form gegeben ist. Somit ermöglicht die Riccati-Gleichung die Berechnung der optimalen Steuerung in linearen quadratischen Regler-Problemen, was in vielen Anwendungen wie der Regelungstechnik und der Finanzwirtschaft von Bedeutung ist.
LSTM (Long Short-Term Memory) Netzwerke sind eine spezielle Art von rekurrenten neuronalen Netzwerken, die entwickelt wurden, um das Problem des vanishing gradient zu überwinden. Sie bestehen aus drei Hauptgattern, die die Informationen steuern: dem Vergessensgate, dem Eingangsgate und dem Ausgangsgate.
Vergessensgate: Dieses Gate entscheidet, welche Informationen aus dem vorherigen Zellzustand verworfen werden sollen. Es verwendet eine Sigmoid-Aktivierungsfunktion, um eine Ausgabe zwischen 0 und 1 zu erzeugen, wobei 0 bedeutet, dass die Information vollständig verworfen wird, und 1, dass sie vollständig beibehalten wird.
Eingangsgate: Das Eingangsgate bestimmt, welche neuen Informationen in den Zellzustand aufgenommen werden. Es kombiniert die aktuelle Eingabe mit dem vorherigen Hidden State und verwendet ebenfalls eine Sigmoid-Aktivierungsfunktion, um die relevanten Informationen zu filtern.
Ausgangsgate: Dieses Gate steuert, welche Informationen aus dem Zellzustand in den nächsten Hidden State überführt werden. Es verwendet die Sigmoid-Funktion, um zu entscheiden, welche Teile des Zellzustands ausge