StudierendeLehrende

Coulomb Force

Die Coulomb-Kraft ist die elektrische Kraft zwischen zwei geladenen Teilchen und wurde nach dem französischen Physiker Charles-Augustin de Coulomb benannt. Diese Kraft kann sowohl anziehend als auch abstoßend wirken, abhängig von den Vorzeichen der Ladungen: gleichnamige Ladungen (z. B. zwei positive oder zwei negative) stoßen sich ab, während ungleichnamige Ladungen (eine positive und eine negative) sich anziehen. Die Stärke der Coulomb-Kraft wird durch das Coulomb-Gesetz beschrieben, das mathematisch wie folgt formuliert ist:

F=k⋅∣q1⋅q2∣r2F = k \cdot \frac{|q_1 \cdot q_2|}{r^2}F=k⋅r2∣q1​⋅q2​∣​

Hierbei ist FFF die Coulomb-Kraft, kkk die Coulomb-Konstante (ungefähr 8.99×109 N m2/C28.99 \times 10^9 \, \text{N m}^2/\text{C}^28.99×109N m2/C2), q1q_1q1​ und q2q_2q2​ die Beträge der beiden Punktladungen, und rrr der Abstand zwischen ihnen. Diese Kraft spielt eine zentrale Rolle in der Elektrodynamik und ist grundlegend für das Verständnis von elektrischen Feldern, Atomen und Molekülen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Dirac-Delta

Die Dirac-Delta-Funktion, oft einfach als Delta-Funktion bezeichnet, ist ein mathematisches Konzept, das in der Physik und Ingenieurwissenschaft häufig verwendet wird. Sie wird definiert als eine Funktion δ(x)\delta(x)δ(x), die an einem Punkt x=0x = 0x=0 unendlich hoch ist und außerhalb dieses Punktes den Wert 0 annimmt. Formal wird sie so beschrieben:

δ(x)={∞fu¨r x=00fu¨r x≠0\delta(x) = \begin{cases} \infty & \text{für } x = 0 \\ 0 & \text{für } x \neq 0 \end{cases}δ(x)={∞0​fu¨r x=0fu¨r x=0​

Ein zentrales Merkmal der Dirac-Delta-Funktion ist, dass das Integral über die gesamte Funktion gleich 1 ist:

∫−∞∞δ(x) dx=1\int_{-\infty}^{\infty} \delta(x) \, dx = 1∫−∞∞​δ(x)dx=1

Die Delta-Funktion wird häufig verwendet, um ideale Punktquellen oder -impulse zu modellieren, da sie es ermöglicht, physikalische Phänomene wie elektrische Ladungen oder mechanische Kräfte, die an einem bestimmten Punkt wirken, präzise zu beschreiben. In der Theorie der Fourier-Transformation spielt die Dirac-Delta-Funktion eine entscheidende Rolle, da sie als "Sonde" für die Frequenzanalyse fungiert.

Mikrofundamente der Makroökonomie

Die Mikrofundierung der Makroökonomie bezieht sich auf den Ansatz, makroökonomische Phänomene durch das Verhalten individueller Akteure, wie Haushalte und Unternehmen, zu erklären. Dieser Ansatz betont, dass makroökonomische Modelle auf soliden mikroökonomischen Prinzipien basieren sollten, um die Aggregation individueller Entscheidungen und deren Auswirkungen auf die Gesamtwirtschaft zu verstehen. Zentrale Themen in diesem Zusammenhang sind:

  • Rationales Verhalten: Individuen und Unternehmen maximieren ihren Nutzen bzw. Gewinn unter gegebenen Bedingungen.
  • Erwartungen: Die Art und Weise, wie Akteure zukünftige Ereignisse antizipieren, beeinflusst ihre gegenwärtigen Entscheidungen.
  • Marktstrukturen: Die Interaktionen zwischen verschiedenen Marktakteuren, wie Anbieter und Nachfrager, formen die makroökonomischen Ergebnisse.

Durch die Analyse dieser Mikrofundamente können Ökonomen besser verstehen, wie und warum makroökonomische Indikatoren wie Inflation, Arbeitslosigkeit und Wirtschaftswachstum variieren.

Newton-Raphson

Das Newton-Raphson-Verfahren ist eine iterative Methode zur Approximation der Nullstellen einer Funktion. Die Grundidee besteht darin, eine Funktion f(x)f(x)f(x) und ihren Ableitungswert f′(x)f'(x)f′(x) zu verwenden, um eine bessere Näherung xn+1x_{n+1}xn+1​ der Nullstelle aus einer aktuellen Näherung xnx_nxn​ zu berechnen. Die Formel zur Aktualisierung lautet:

xn+1=xn−f(xn)f′(xn)x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}xn+1​=xn​−f′(xn​)f(xn​)​

Dieses Verfahren konvergiert schnell, insbesondere wenn die Anfangsnäherung nahe an der tatsächlichen Nullstelle liegt. Es ist jedoch wichtig, darauf zu achten, dass die Ableitung f′(x)f'(x)f′(x) nicht gleich null ist, da dies zu Problemen führen kann. Anwendungen finden sich in vielen Bereichen der Wissenschaft und Technik, wo präzise Lösungen für nichtlineare Gleichungen erforderlich sind.

Cauchy-Integralformel

Die Cauchy-Integral-Formel ist ein zentrales Resultat der komplexen Analysis, das die Beziehung zwischen den Werten einer holomorphen Funktion und ihren Integralen über geschlossene Kurven beschreibt. Sie besagt, dass für eine holomorphe Funktion f(z)f(z)f(z) innerhalb und auf einer geschlossenen Kurve CCC sowie für einen Punkt aaa, der sich innerhalb von CCC befindet, die folgende Gleichung gilt:

f(a)=12πi∮Cf(z)z−a dzf(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - a} \, dzf(a)=2πi1​∮C​z−af(z)​dz

Die Formel hat mehrere wichtige Implikationen:

  • Sie ermöglicht die Berechnung von Funktionswerten aus Integralen.
  • Sie spielt eine entscheidende Rolle in der Theorie der Residuen und der Berechnung von Integralen.
  • Sie zeigt, dass der Wert einer holomorphen Funktion an einem Punkt vollständig durch ihre Werte auf einer umgebenden Kurve bestimmt ist.

Die Cauchy-Integral-Formel ist daher nicht nur theoretisch wichtig, sondern hat auch praktische Anwendungen in der Physik und Ingenieurwissenschaft.

Singulärwertzerlegungskontrolle

Die Singular Value Decomposition (SVD) ist eine mathematische Methode, die zur Analyse und Reduktion von Daten verwendet wird. Sie zerlegt eine Matrix AAA in drei Komponenten: A=UΣVTA = U \Sigma V^TA=UΣVT, wobei UUU und VVV orthogonale Matrizen sind und Σ\SigmaΣ eine diagonale Matrix mit den Singulärwerten von AAA enthält. Diese Zerlegung ermöglicht es, die wichtigsten Informationen einer Matrix zu extrahieren, indem weniger signifikante Werte verworfen werden, was für Anwendungen wie die Bildkompression oder das maschinelle Lernen von Bedeutung ist. Der Begriff Control in diesem Kontext bezieht sich darauf, wie man die SVD anpassen oder steuern kann, um optimale Ergebnisse zu erzielen, indem man beispielsweise die Anzahl der verwendeten Singulärwerte entscheidet oder die Matrix vor der Zerlegung normalisiert. Durch die Steuerung der SVD können Forscher und Praktiker sicherstellen, dass die wichtigsten Merkmale der Daten erhalten bleiben, während Rauschen und irrelevante Informationen minimiert werden.

Hawking-Temperatur-Derivation

Die Hawking-Temperatur beschreibt die Temperatur von Schwarze Löcher, die durch die quantenmechanische Effekte an der Ereignishorizont-Oberfläche entstehen. Stephen Hawking zeigte, dass aufgrund von Quantenfluktuationen Paare von Teilchen und Antiteilchen in der Nähe des Ereignishorizonts entstehen können. Wenn eines dieser Teilchen ins schwarze Loch fällt und das andere entkommt, beobachtet ein äußerer Beobachter, dass das schwarze Loch Energie verliert, was zu einer positiven Temperatur führt. Die Hawking-Temperatur THT_HTH​ kann mathematisch durch die Formel gegeben werden:

TH=ℏc38πGMkBT_H = \frac{\hbar c^3}{8 \pi G M k_B}TH​=8πGMkB​ℏc3​

Hierbei sind ℏ\hbarℏ das reduzierte Plancksche Wirkungsquantum, ccc die Lichtgeschwindigkeit, GGG die Gravitationskonstante, MMM die Masse des schwarzen Lochs und kBk_BkB​ die Boltzmann-Konstante. Diese Temperatur zeigt, dass kleinere schwarze Löcher heißer sind und schneller verdampfen als größere, was interessante Implikationen für die Thermodynamik von schwarzen Löchern hat.