Das Dirichlet'sche Approximationstheorem ist ein fundamentales Resultat in der Zahlentheorie, das sich mit der Approximation reeller Zahlen durch rationale Zahlen beschäftigt. Es besagt, dass für jede reelle Zahl und jede positive ganze Zahl eine rationale Zahl existiert, so dass die folgende Ungleichung gilt:
Dies bedeutet, dass man für jede reelle Zahl und jede gewünschte Genauigkeit eine rationale Approximation finden kann, deren Nenner nicht zu groß ist. Das Theorem hat weitreichende Anwendungen in der Diophantischen Approximation und der Theorie der irrationalen Zahlen. Es illustriert die Dichte der rationalen Zahlen in den reellen Zahlen und zeigt, dass sie, trotz der Unendlichkeit der reellen Zahlen, immer nahe genug an einer gegebenen reellen Zahl liegen können.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.