StudierendeLehrende

Thin Film Stress Measurement

Die Messung von Spannungen in Dünnschichten (Thin Film Stress Measurement) ist ein wichtiger Prozess in der Materialwissenschaft und der Mikroelektronik, da die mechanischen Eigenschaften dünner Filme entscheidend für die Leistung von Bauteilen sind. Diese Spannungen können durch verschiedene Faktoren verursacht werden, wie z.B. Temperaturänderungen, chemische Reaktionen oder die Abscheidungstechniken, die zur Herstellung der Filme verwendet werden.

Zur Messung der Spannungen werden häufig Techniken wie die Wafer-Biegemethode oder die X-ray Diffraction (XRD) angewendet. Bei der Wafer-Biegemethode wird die Krümmung eines Substrats gemessen, das eine dünne Schicht enthält, und die resultierende Biegung kann verwendet werden, um die interne Spannung zu berechnen. Mathematisch kann die Beziehung zwischen der Krümmung κ\kappaκ und der Spannung σ\sigmaσ durch die Formel

σ=E(1−ν)⋅κ\sigma = \frac{E}{(1 - \nu)} \cdot \kappa σ=(1−ν)E​⋅κ

beschrieben werden, wobei EEE der Elastizitätsmodul und ν\nuν die Poisson-Zahl ist. Eine präzise Messung dieser Spannungen ist entscheidend, um die Zuverlässigkeit und Lebensdauer von Halbleiterbauelementen zu gewährleisten.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Poynting-Vektor

Der Poynting-Vektor ist ein fundamentales Konzept in der Elektrodynamik, das die Energieflussdichte eines elektromagnetischen Feldes beschreibt. Er wird durch die Formel

S=E×H\mathbf{S} = \mathbf{E} \times \mathbf{H}S=E×H

definiert, wobei E\mathbf{E}E das elektrische Feld und H\mathbf{H}H das magnetische Feld ist. Der Poynting-Vektor gibt die Richtung und die Intensität des Energieflusses an, der durch das elektromagnetische Feld transportiert wird. Die Einheit des Poynting-Vektors ist Watt pro Quadratmeter (W/m²), was die Energiemenge pro Zeit und Fläche angibt, die durch das Feld übertragen wird. In praktischen Anwendungen ist der Poynting-Vektor entscheidend für das Verständnis von Phänomenen wie der Strahlung von Antennen oder der Übertragung von Energie in Wellenleitern.

Kolmogorov-Smirnov-Test

Der Kolmogorov-Smirnov Test ist ein statistisches Verfahren, das verwendet wird, um die Übereinstimmung zwischen einer empirischen Verteilung und einer theoretischen Verteilung zu überprüfen oder um zwei empirische Verteilungen miteinander zu vergleichen. Der Test basiert auf der maximalen Differenz zwischen den kumulativen Verteilungsfunktionen (CDF) der beiden Verteilungen. Die Teststatistik wird definiert als:

D=max⁡∣Fn(x)−F(x)∣D = \max |F_n(x) - F(x)|D=max∣Fn​(x)−F(x)∣

wobei Fn(x)F_n(x)Fn​(x) die empirische Verteilungsfunktion und F(x)F(x)F(x) die theoretische Verteilungsfunktion ist. Ein hoher Wert von DDD deutet darauf hin, dass die Daten nicht gut mit der angenommenen Verteilung übereinstimmen. Der Kolmogorov-Smirnov Test ist besonders nützlich, da er keine Annahmen über die spezifische Form der Verteilung macht und sowohl für stetige als auch für diskrete Verteilungen angewendet werden kann.

Fermatscher Satz

Das Fermatsche Theorem bezieht sich auf die berühmte Aussage von Pierre de Fermat, die besagt, dass es keine drei positiven ganzen Zahlen aaa, bbb und ccc gibt, die die Gleichung an+bn=cna^n + b^n = c^nan+bn=cn für n>2n > 2n>2 erfüllen. Diese Behauptung wurde erstmals 1637 formuliert und ist bekannt für den zugehörigen Satz, dass Fermat in den Rand eines Buches schrieb, dass er einen "wunderbaren Beweis" dafür gefunden habe, aber der Rand nicht ausreiche, um ihn niederzuschreiben. Der Satz blieb über 350 Jahre lang unbewiesen, bis Andrew Wiles 1994 einen vollständigen Beweis lieferte. Dieser Beweis nutzt moderne mathematische Techniken, insbesondere die Theorie der elliptischen Kurven und modulare Formen. Das Fermatsche Theorem ist ein Meilenstein in der Zahlentheorie und hat bedeutende Auswirkungen auf die Mathematik und deren Teilgebiete.

Fenwick-Baum

Ein Fenwick Tree, auch bekannt als Binary Indexed Tree, ist eine Datenstruktur, die zur effizienten Verarbeitung von dynamischen Daten verwendet wird, insbesondere für die Berechnung von Prefix-Summen. Sie ermöglicht es, sowohl das Update eines einzelnen Elements als auch die Berechnung der Summe eines Bereichs in logarithmischer Zeit, also in O(log⁡n)O(\log n)O(logn), zu realisieren. Der Baum ist so aufgebaut, dass jeder Knoten die Summe einer Teilmenge von Elementen speichert, was eine schnelle Aktualisierung und Abfrage ermöglicht.

Die Struktur ist besonders nützlich in Szenarien, in denen häufige Aktualisierungen und Abfragen erforderlich sind, wie zum Beispiel in statistischen Berechnungen oder in der Spielprogrammierung. Die Speicherkapazität eines Fenwick Trees beträgt O(n)O(n)O(n), wobei nnn die Anzahl der Elemente im Array ist. Die Implementierung ist relativ einfach und erfordert nur grundlegende Kenntnisse über Bitoperationen und Arrays.

Coulomb-Kraft

Die Coulomb-Kraft ist die elektrische Kraft zwischen zwei geladenen Teilchen und wurde nach dem französischen Physiker Charles-Augustin de Coulomb benannt. Diese Kraft kann sowohl anziehend als auch abstoßend wirken, abhängig von den Vorzeichen der Ladungen: gleichnamige Ladungen (z. B. zwei positive oder zwei negative) stoßen sich ab, während ungleichnamige Ladungen (eine positive und eine negative) sich anziehen. Die Stärke der Coulomb-Kraft wird durch das Coulomb-Gesetz beschrieben, das mathematisch wie folgt formuliert ist:

F=k⋅∣q1⋅q2∣r2F = k \cdot \frac{|q_1 \cdot q_2|}{r^2}F=k⋅r2∣q1​⋅q2​∣​

Hierbei ist FFF die Coulomb-Kraft, kkk die Coulomb-Konstante (ungefähr 8.99×109 N m2/C28.99 \times 10^9 \, \text{N m}^2/\text{C}^28.99×109N m2/C2), q1q_1q1​ und q2q_2q2​ die Beträge der beiden Punktladungen, und rrr der Abstand zwischen ihnen. Diese Kraft spielt eine zentrale Rolle in der Elektrodynamik und ist grundlegend für das Verständnis von elektrischen Feldern, Atomen und Molekülen.

Keynesianischer Fiskalmultiplikator

Der Keynesianische Fiskalmultiplikator ist ein wirtschaftliches Konzept, das beschreibt, wie Veränderungen in der Staatsausgaben oder Besteuerung das Gesamteinkommen einer Volkswirtschaft beeinflussen. Wenn die Regierung beispielsweise die Ausgaben erhöht, führt dies zu einer direkten Erhöhung der Gesamtnachfrage, was wiederum Unternehmen dazu anregt, mehr zu produzieren und Arbeitsplätze zu schaffen. Der Multiplikator-Effekt entsteht, weil die zusätzlichen Einkommen, die durch diese Ausgaben generiert werden, wiederum zu weiteren Ausgaben führen.

Der Fiskalmultiplikator kann mathematisch als Verhältnis der Änderung des Gesamteinkommens (ΔY\Delta YΔY) zur Änderung der Staatsausgaben (ΔG\Delta GΔG) dargestellt werden:

k=ΔYΔGk = \frac{\Delta Y}{\Delta G}k=ΔGΔY​

Dabei steht kkk für den Multiplikator. Ein höherer Multiplikator bedeutet, dass die Wirkung der Staatsausgaben auf das Gesamteinkommen stärker ist. In der Praxis variiert der Fiskalmultiplikator je nach wirtschaftlichen Bedingungen, wie z.B. der Höhe der Arbeitslosigkeit oder der Kapazitätsauslastung der Wirtschaft.