StudierendeLehrende

Thin Film Stress Measurement

Die Messung von Spannungen in Dünnschichten (Thin Film Stress Measurement) ist ein wichtiger Prozess in der Materialwissenschaft und der Mikroelektronik, da die mechanischen Eigenschaften dünner Filme entscheidend für die Leistung von Bauteilen sind. Diese Spannungen können durch verschiedene Faktoren verursacht werden, wie z.B. Temperaturänderungen, chemische Reaktionen oder die Abscheidungstechniken, die zur Herstellung der Filme verwendet werden.

Zur Messung der Spannungen werden häufig Techniken wie die Wafer-Biegemethode oder die X-ray Diffraction (XRD) angewendet. Bei der Wafer-Biegemethode wird die Krümmung eines Substrats gemessen, das eine dünne Schicht enthält, und die resultierende Biegung kann verwendet werden, um die interne Spannung zu berechnen. Mathematisch kann die Beziehung zwischen der Krümmung κ\kappaκ und der Spannung σ\sigmaσ durch die Formel

σ=E(1−ν)⋅κ\sigma = \frac{E}{(1 - \nu)} \cdot \kappa σ=(1−ν)E​⋅κ

beschrieben werden, wobei EEE der Elastizitätsmodul und ν\nuν die Poisson-Zahl ist. Eine präzise Messung dieser Spannungen ist entscheidend, um die Zuverlässigkeit und Lebensdauer von Halbleiterbauelementen zu gewährleisten.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Stoffwechselweg-Engineering

Metabolic Pathway Engineering ist ein interdisziplinärer Ansatz, der Biotechnologie, Biochemie und genetische Ingenieurwissenschaften vereint, um die Stoffwechselwege von Mikroorganismen oder Pflanzen gezielt zu verändern. Ziel ist es, die Produktion von spezifischen Metaboliten, wie z.B. Biokraftstoffen, Pharmazeutika oder chemischen Vorläufern, zu optimieren. Dazu werden verschiedene Techniken eingesetzt, darunter Gentechnik, Genom-Editing (wie CRISPR-Cas9) und synthetische Biologie, um Gene zu modifizieren oder neue Gene einzuführen. Ein zentraler Aspekt dabei ist die Analyse und das Verständnis der bestehenden Stoffwechselwege, die oft durch mathematische Modelle beschrieben werden können, um die Auswirkungen von Veränderungen vorherzusagen. Durch gezielte Eingriffe lassen sich nicht nur die Ausbeuten erhöhen, sondern auch die Kosteneffizienz und Nachhaltigkeit der biotechnologischen Prozesse verbessern.

Np-schwere Probleme

Np-Hard Probleme sind eine Klasse von Problemen in der Informatik, die als besonders schwierig gelten. Ein Problem wird als Np-Hard bezeichnet, wenn es mindestens so schwierig ist wie das schwierigste Problem in der Klasse NP (Nichtdeterministische Polynomialzeit). Das bedeutet, dass, selbst wenn wir die Lösung für ein Np-Hard Problem kennen, es im Allgemeinen nicht möglich ist, diese Lösung effizient zu überprüfen oder zu berechnen. Wichtige Merkmale von Np-Hard Problemen sind:

  • Sie können nicht in polynomialer Zeit gelöst werden (es sei denn, P = NP).
  • Sie sind oft optimierungsbasiert, wie z.B. das Travelling-Salesman-Problem oder das Rucksackproblem.
  • Lösungen für Np-Hard Probleme können durch heuristische oder approximative Ansätze gefunden werden, die jedoch nicht garantieren, die optimale Lösung zu finden.

Zusammenfassend lässt sich sagen, dass Np-Hard Probleme eine zentrale Herausforderung in der theoretischen Informatik darstellen und signifikante Auswirkungen auf reale Anwendungen haben.

Ramanujan-Funktion

Die Ramanujan-Funktion, oft als R(n)R(n)R(n) bezeichnet, ist eine mathematische Funktion, die von dem indischen Mathematiker Srinivasa Ramanujan eingeführt wurde. Sie hat die Eigenschaft, dass sie die Anzahl der Partitionen einer Zahl nnn in Teile darstellt, die nicht größer als eine bestimmte Größe sind. Eine wichtige Eigenschaft der Ramanujan-Funktion ist, dass sie auf den Modularformen und der Zahlentheorie basiert, was sie zu einem zentralen Thema in diesen Bereichen macht.

Eine der bekanntesten Formulierungen der Ramanujan-Funktion ist die Darstellung von Partitionen, die durch die Gleichung

R(n)=p(n)−p(n−1)+p(n−2)−p(n−3)+…R(n) = p(n) - p(n-1) + p(n-2) - p(n-3) + \ldotsR(n)=p(n)−p(n−1)+p(n−2)−p(n−3)+…

gegeben wird, wobei p(n)p(n)p(n) die Anzahl der Partitionen von nnn bezeichnet. Diese Funktion hat zahlreiche Anwendungen in der Kombinatorik und der theoretischen Informatik, insbesondere in der Analyse von Algorithmen zur Berechnung von Partitionen. Die Ramanujan-Funktion zeigt faszinierende Zusammenhänge zwischen verschiedenen mathematischen Konzepten und hat das Interesse von Mathematikern auf der ganzen Welt geweckt.

Wiener Prozess

Der Wiener-Prozess, auch als Brownian Motion bekannt, ist ein fundamentaler Prozess in der Stochastik und der Finanzmathematik, der die zufällige Bewegung von Partikeln in Flüssigkeiten beschreibt. Mathematisch wird er als eine Familie von Zufallsvariablen W(t)W(t)W(t) definiert, die die folgenden Eigenschaften aufweisen:

  1. W(0)=0W(0) = 0W(0)=0 fast sicher.
  2. Die Increments W(t)−W(s)W(t) - W(s)W(t)−W(s) für 0≤s<t0 \leq s < t0≤s<t sind unabhängig und normalverteilt mit einem Mittelwert von 0 und einer Varianz von t−st - st−s.
  3. Der Prozess hat kontinuierliche Pfade, d.h. die Funktion W(t)W(t)W(t) ist mit hoher Wahrscheinlichkeit stetig in der Zeit.

Der Wiener-Prozess wird häufig zur Modellierung von finanziellen Zeitreihen und Diffusionsprozessen in der Physik verwendet, da er eine ideale Grundlage für viele komplexe Modelle bietet, wie zum Beispiel das Black-Scholes-Modell zur Bewertung von Optionen.

Eulers pentagonales Zahlentheorem

Der Euler’s Pentagonal Number Theorem ist ein bemerkenswerter Satz in der Zahlentheorie, der eine Verbindung zwischen den pentagonalen Zahlen und der Theorie der Partitionszahlen herstellt. Eine pentagonale Zahl PkP_kPk​ ist definiert durch die Formel

Pk=k(3k−1)2P_k = \frac{k(3k - 1)}{2}Pk​=2k(3k−1)​

für k=1,2,3,…k = 1, 2, 3, \ldotsk=1,2,3,… und ihre negativen Indizes k=−1,−2,−3,…k = -1, -2, -3, \ldotsk=−1,−2,−3,…. Der Satz besagt, dass die unendliche Reihe der Partitionszahlen p(n)p(n)p(n), also die Anzahl der Möglichkeiten, eine positive ganze Zahl nnn als Summe von positiven ganzen Zahlen zu schreiben, durch die pentagonalen Zahlen dargestellt werden kann:

∑n=0∞p(n)xn=∏k=1∞11−xPk⋅11−xP−k\sum_{n=0}^{\infty} p(n)x^n = \prod_{k=1}^{\infty} \frac{1}{1 - x^{P_k}} \cdot \frac{1}{1 - x^{P_{-k}}}n=0∑∞​p(n)xn=k=1∏∞​1−xPk​1​⋅1−xP−k​1​

Diese Beziehung zeigt, dass die Partitionszahlen sowohl positive als auch negative pentagonale Zahlen verwenden. Euler’s Theorem hat weitreichende Anwendungen in der Kombinatorik und der theoretischen Mathematik, da es tiefe Einblicke in die Struktur von Partitionszahlen

Metamaterial-Tarnanwendungen

Metamaterial Cloaking bezieht sich auf die Verwendung von speziell gestalteten Materialien, die Eigenschaften aufweisen, die in der Natur nicht vorkommen, um Objekte vor elektromagnetischen Wellen zu verstecken. Diese Metamaterialien sind in der Lage, Licht und andere Wellen so zu manipulieren, dass sie um ein Objekt herumgeleitet werden, wodurch das Objekt für einen Beobachter unsichtbar wird. Anwendungen dieser Technologie sind vielfältig und umfassen:

  • Militärische Tarnung: Die Entwicklung von Tarntechnologien für Fahrzeuge und Ausrüstungen, um sie vor Radar- und Infrarotsicht zu schützen.
  • Telekommunikation: Verbesserung der Signalübertragung durch Minimierung von Störungen durch Hindernisse.
  • Optische Geräte: Herstellung von Linsen und Sensoren, die eine verbesserte Bildqualität und Empfindlichkeit bieten.

Die theoretische Grundlage für das Cloaking basiert auf der Manipulation von Lichtstrahlen, was mathematisch durch die Maxwell-Gleichungen beschrieben wird. Solche Technologien könnten in der Zukunft die Art und Weise revolutionieren, wie wir Objekte in unserer Umgebung wahrnehmen und mit ihnen interagieren.