StudierendeLehrende

Dynamic Inconsistency

Dynamische Inkonsistenz bezieht sich auf eine Situation, in der die Präferenzen eines Individuums oder einer Institution im Laufe der Zeit nicht konsistent bleiben, selbst wenn sich die Rahmenbedingungen nicht ändern. Dies tritt häufig in Entscheidungsprozessen auf, bei denen kurzfristige Belohnungen gegenüber langfristigen Zielen priorisiert werden, was zu suboptimalen Entscheidungen führt. Ein klassisches Beispiel ist das Temptation-Problem, bei dem jemand plant, gesünder zu leben, aber kurzfristig die Versuchung hat, ungesunde Lebensmittel zu konsumieren.

Die mathematische Formulierung kann in Form eines intertemporalen Optimierungsproblems dargestellt werden, bei dem der Nutzen UUU über die Zeit ttt maximiert wird:

max⁡∑t=0TU(ct)(1+r)t\max \sum_{t=0}^{T} \frac{U(c_t)}{(1 + r)^t}maxt=0∑T​(1+r)tU(ct​)​

Hierbei ist ctc_tct​ der Konsum zu einem bestimmten Zeitpunkt ttt und rrr der Diskontierungsfaktor. Wenn jedoch zukünftige Entscheidungen von gegenwärtigen Präferenzen abweichen, entsteht dynamische Inkonsistenz, was zu einer Abweichung von der optimalen Strategie führt.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Dreiphasen-Gleichrichter

Ein Dreiphasen-Gleichrichter ist ein elektronisches Gerät, das Wechselstrom (AC) aus einem dreiphasigen System in Gleichstrom (DC) umwandelt. Er besteht typischerweise aus sechs Dioden oder Transistoren, die in einem bestimmten Schema angeordnet sind, um die positiven Halbwellen der drei Phasen zu nutzen. Der Vorteil eines Dreiphasen-Gleichrichters liegt in seiner Fähigkeit, eine gleichmäßigere und stabilere Gleichstromausgangsspannung zu liefern, da die Wellenform der Ausgangsspannung weniger ripple (Welligkeit) aufweist als bei einem einphasigen Gleichrichter.

Mathematisch kann die durchschnittliche Ausgangsspannung eines idealen dreiphasigen Gleichrichters durch die Gleichung

VDC=32πVLLV_{DC} = \frac{3 \sqrt{2}}{\pi} V_{LL}VDC​=π32​​VLL​

beschrieben werden, wobei VLLV_{LL}VLL​ die Spitzenspannung zwischen den Phasen ist. Diese Gleichrichter finden häufig Anwendung in der industriellen Stromversorgung, bei der Erzeugung von Gleichstrom für Motorantriebe und in der Leistungselektronik.

Mahler-Maß

Die Mahler Measure ist ein Konzept aus der algebraischen Geometrie und der Zahlentheorie, das zur Quantifizierung der Komplexität von Polynomen verwendet wird. Sie ist definiert für ein gegebenes mehrvariables Polynom P(x1,x2,…,xn)P(x_1, x_2, \ldots, x_n)P(x1​,x2​,…,xn​) und wird mathematisch als

M(P)=∏i=1nmax⁡(1,∣ai∣)M(P) = \prod_{i=1}^{n} \max(1, |a_i|) M(P)=i=1∏n​max(1,∣ai​∣)

beschrieben, wobei aia_iai​ die Koeffizienten des Polynoms sind. Die Mahler Measure misst dabei nicht nur den Betrag der Koeffizienten, sondern berücksichtigt auch die maximalen Werte, um eine Art "Volumen" im Koeffizientenraum zu erfassen. Diese Maßzahl hat bedeutende Anwendungen in der Diophantischen Geometrie, da sie hilft, die Größe und die Wurzeln von Polynomen zu charakterisieren. Zudem spielt die Mahler Measure eine Rolle in der Untersuchung von transzendentalen Zahlen und der arithmetischen Geometrie.

Tobin-Steuer

Die Tobin Tax ist eine vorgeschlagene Steuer auf internationale Finanztransaktionen, die vom Ökonomen James Tobin in den 1970er Jahren eingeführt wurde. Ihr Ziel ist es, die Spekulation auf Währungen zu verringern und die Stabilität der Finanzmärkte zu fördern. Die Steuer würde auf den Umtausch von Währungen erhoben werden, wobei ein kleiner Prozentsatz des Transaktionsvolumens als Steuer abgezogen wird.

Durch diese Maßnahme soll eine Abschreckung von kurzfristigen Spekulationen erreicht werden, während langfristige Investitionen nicht übermäßig belastet werden. Die Einnahmen aus der Tobin Tax könnten zudem zur Finanzierung von Entwicklungsprojekten und zur Bekämpfung von Armut eingesetzt werden. Kritiker argumentieren jedoch, dass eine solche Steuer die Liquidität der Märkte beeinträchtigen und zu höheren Transaktionskosten führen könnte.

Huygenssches Prinzip

Das Huygens-Prinzip ist eine fundamentale Theorie in der Wellenoptik, die von dem niederländischen Physiker Christiaan Huygens im 17. Jahrhundert formuliert wurde. Es besagt, dass jede Punktquelle einer Welle als Ausgangspunkt für neue, sekundäre Wellenfronten betrachtet werden kann. Diese sekundären Wellenfronten breiten sich mit der gleichen Geschwindigkeit und in alle Richtungen aus. Die Gesamtwellenfront zu einem späteren Zeitpunkt ergibt sich aus der Überlagerung dieser sekundären Wellenfronten. Mathematisch lässt sich das Prinzip durch die Beziehung S=∑i=1nSiS = \sum_{i=1}^{n} S_iS=∑i=1n​Si​ darstellen, wobei SSS die Gesamtsumme der Wellenfronten und SiS_iSi​ die einzelnen Wellenfronten sind. Dieses Prinzip hilft, Phänomene wie Beugung und Interferenz von Wellen zu erklären.

Xgboost

XGBoost (Extreme Gradient Boosting) ist ein leistungsstarkes und flexibles maschinelles Lernverfahren, das auf der Boosting-Technik basiert. Es optimiert die Vorhersagegenauigkeit, indem es schwache Lernmodelle, typischerweise Entscheidungsbäume, iterativ zu einem starken Modell kombiniert. Der Algorithmus nutzt dabei Gradientenabstieg, um die Fehler der vorherigen Bäume zu minimieren und dadurch die Gesamtgenauigkeit zu steigern.

Ein zentrales Merkmal von XGBoost ist die Verwendung von Regularisierungstechniken, die helfen, Überanpassung zu verhindern und die Modellkomplexität zu steuern. Die mathematische Formulierung des Modells basiert auf der Minimierung einer Verlustfunktion LLL und der Hinzufügung eines Regularisierungsterms Ω\OmegaΩ:

Objektive Funktion=L(y,y^)+∑kΩ(fk)\text{Objektive Funktion} = L(y, \hat{y}) + \sum_{k} \Omega(f_k)Objektive Funktion=L(y,y^​)+k∑​Ω(fk​)

Hierbei steht yyy für die tatsächlichen Werte, y^\hat{y}y^​ für die vorhergesagten Werte und fkf_kfk​ für die k-ten Entscheidungsbäume. XGBoost ist besonders beliebt in Wettbewerben des maschinellen Lernens und wird häufig in der Industrie eingesetzt, um hochgradig skalierbare und effiziente Modelle zu erstellen.

Bayesianische Statistik Konzepte

Die Bayesianische Statistik ist ein Ansatz zur Datenanalyse, der die Wahrscheinlichkeit als Maß für den Grad des Glaubens an eine Hypothese interpretiert. Im Gegensatz zur klassischen Statistik, die auf Frequenzen basiert, nutzt die Bayesianische Statistik das Bayessche Theorem zur Aktualisierung von Wahrscheinlichkeiten, wenn neue Daten verfügbar sind. Mathematisch wird dies durch die Formel dargestellt:

P(H∣D)=P(D∣H)⋅P(H)P(D)P(H | D) = \frac{P(D | H) \cdot P(H)}{P(D)}P(H∣D)=P(D)P(D∣H)⋅P(H)​

Hierbei steht P(H∣D)P(H | D)P(H∣D) für die posterior Wahrscheinlichkeit der Hypothese HHH gegeben die Daten DDD, P(D∣H)P(D | H)P(D∣H) ist die likelihood der Daten unter der Hypothese, P(H)P(H)P(H) ist die prior Wahrscheinlichkeit der Hypothese und P(D)P(D)P(D) ist die marginale Wahrscheinlichkeit der Daten. Dieser Ansatz ermöglicht es, Vorwissen (Prior) in die Analyse einzubeziehen und bietet eine flexible und intuitive Möglichkeit, Entscheidungen unter Unsicherheit zu treffen. Durch die Iteration dieses Prozesses können Bayesianer ihre Schätzungen kontinuierlich verfeinern, was in dynamischen und sich verändernden Umgebungen besonders vorteilhaft ist.