StudierendeLehrende

Edgeworth Box

Die Edgeworth Box ist ein grafisches Werkzeug in der Mikroökonomie, das verwendet wird, um die Allokation von Ressourcen zwischen zwei Individuen oder Gruppen darzustellen. Sie zeigt die möglichen Kombinationen von zwei Gütern, die von diesen Individuen konsumiert werden können. Die Box hat eine quadratische Form, wobei jede Achse die Menge eines Gutes darstellt, das von einem der beiden Akteure konsumiert wird.

Innerhalb der Box können die Indifferenzkurven beider Individuen eingezeichnet werden, die die verschiedenen Konsumkombinationen zeigen, bei denen jeder Akteur den gleichen Nutzen erzielt. Der Punkt, an dem sich die Indifferenzkurven schneiden, stellt einen Pareto-effizienten Zustand dar, bei dem keine Umverteilung der Ressourcen möglich ist, ohne dass einer der Akteure schlechter gestellt wird. In der Edgeworth Box können auch die Konzepte der Handelsgewinne und der Kooperation visualisiert werden, indem gezeigt wird, wie die Individuen durch Tausch ihre Wohlfahrt verbessern können.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Bellman-Ford

Der Bellman-Ford-Algorithmus ist ein grundlegender Algorithmus zur Bestimmung der kürzesten Wege von einem Startknoten zu allen anderen Knoten in einem gewichteten Graphen, der auch negative Gewichtungen zulässt. Er arbeitet in mehreren Iterationen und aktualisiert die Schätzungen der kürzesten Wege, indem er für jede Kante (u,v)(u, v)(u,v) mit Gewicht www die Bedingung überprüft, ob der bisher bekannte Weg zu vvv durch uuu verbessert werden kann, also ob dist(v)>dist(u)+w\text{dist}(v) > \text{dist}(u) + wdist(v)>dist(u)+w. Der Algorithmus hat eine Laufzeit von O(V⋅E)O(V \cdot E)O(V⋅E), wobei VVV die Anzahl der Knoten und EEE die Anzahl der Kanten im Graphen ist. Ein weiterer wichtiger Aspekt des Bellman-Ford-Algorithmus ist seine Fähigkeit, negative Zyklen zu erkennen: Wenn nach V−1V-1V−1 Iterationen noch eine Verbesserung der Distanz möglich ist, bedeutet dies, dass ein negativer Zyklus im Graphen vorhanden ist. Der Algorithmus ist besonders nützlich in Anwendungen, wo negative Gewichtungen auftreten können, wie z.B. in Finanzmodellen oder bei der Analyse von Netzwerkpfaden.

Perowskit-Solarzellen-Degradation

Die Degradation von Perowskit-Solarzellen ist ein zentrales Problem, das die langfristige Stabilität und Effizienz dieser vielversprechenden Photovoltaiktechnologie beeinträchtigt. Hauptursachen für die Degradation sind Umwelteinflüsse wie Feuchtigkeit, Temperatur und UV-Strahlung, die die chemische Struktur des Perowskit-Materials angreifen können. Diese Zellen enthalten oft organische Komponenten, die empfindlich auf äußere Faktoren reagieren, was zu einem Verlust der elektrischen Eigenschaften und einer Verringerung der Umwandlungseffizienz führt. Zudem können ionische Migration und die Bildung unerwünschter Phasen in der aktiven Schicht die Leistung weiter mindern. Um die Lebensdauer von Perowskit-Solarzellen zu verlängern, ist die Entwicklung stabilerer Materialien und Schutzschichten von entscheidender Bedeutung.

Big O Notation

Die Big O Notation ist ein mathematisches Konzept, das verwendet wird, um die Laufzeit oder Speicherkomplexität von Algorithmen zu analysieren. Sie beschreibt, wie die Laufzeit eines Algorithmus im Verhältnis zur Eingabegröße nnn wächst. Dabei wird der schnellste Wachstumsfaktor identifiziert und konstanten Faktoren sowie niedrigere Ordnungsterme ignoriert. Zum Beispiel bedeutet eine Laufzeit von O(n2)O(n^2)O(n2), dass die Laufzeit quadratisch zur Größe der Eingabe ansteigt, was in der Praxis häufig bei verschachtelten Schleifen beobachtet wird. Die Big O Notation hilft Entwicklern und Forschern, Algorithmen zu vergleichen und effizientere Lösungen zu finden, indem sie einen klaren Überblick über das Verhalten von Algorithmen bei großen Datenmengen bietet.

Borel-Sigma-Algebra

Die Borel Sigma-Algebra ist eine wichtige Struktur in der Maßtheorie und der Wahrscheinlichkeitstheorie, die auf den reellen Zahlen basiert. Sie wird gebildet, indem man die offenen Intervalle auf den reellen Zahlen R\mathbb{R}R als Ausgangspunkt nimmt und dann alle möglichen Mengen durch endliche und abzählbare Vereinigungen, Durchschnitte und Komplementbildung generiert. Mathematisch ausgedrückt entspricht die Borel Sigma-Algebra B(R)\mathcal{B}(\mathbb{R})B(R) der kleinsten Sigma-Algebra, die die offenen Mengen von R\mathbb{R}R enthält.

Die Borel Sigma-Algebra ist entscheidend für die Definition von Borel-Maßen, die eine Grundlage für die Integration und die Analyse von Funktionen bieten. Zu den Elementen der Borel Sigma-Algebra gehören nicht nur offene Intervalle, sondern auch geschlossene Intervalle, halboffene Intervalle sowie viele kompliziertere Mengen, die durch die oben genannten Operationen konstruiert werden können. Dadurch ermöglicht die Borel Sigma-Algebra eine umfassende Behandlung von Eigenschaften von Funktionen und Zufallsvariablen im Kontext der Maßtheorie.

Lorentz-Transformation

Die Lorentz-Transformation ist ein fundamentales Konzept der speziellen Relativitätstheorie, das beschreibt, wie die Koordinaten von Raum und Zeit zwischen zwei Bezugssystemen, die sich relativ zueinander mit konstanter Geschwindigkeit bewegen, umgerechnet werden. Sie wurde von dem niederländischen Physiker Hendrik Lorentz formuliert und ist entscheidend für das Verständnis der Relativität von Zeit und Raum. Die Transformation zeigt, dass Zeit und Raum nicht absolut sind, sondern von der Relativgeschwindigkeit der Beobachter abhängen.

Die wichtigsten Formeln der Lorentz-Transformation lauten:

x′=γ(x−vt)x' = \gamma (x - vt)x′=γ(x−vt) t′=γ(t−vxc2)t' = \gamma \left( t - \frac{vx}{c^2} \right)t′=γ(t−c2vx​)

Hierbei sind:

  • x′x'x′ und t′t't′ die Koordinaten im bewegten Bezugssystem,
  • xxx und ttt die Koordinaten im ruhenden Bezugssystem,
  • vvv die Relativgeschwindigkeit zwischen den beiden Systemen,
  • ccc die Lichtgeschwindigkeit,
  • γ=11−v2c2\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}γ=1−c2v2​​1​ der Lorentz-Faktor, der die Effekte der Zeitdilatation und Längenkontraktion quantifiziert.

Diese Transformation zeigt,

Digitale Filterentwurfsmethoden

Die Entwicklung digitaler Filter ist ein entscheidender Prozess in der Signalverarbeitung, der es ermöglicht, bestimmte Frequenzkomponenten eines Signals zu verstärken oder zu dämpfen. Es gibt verschiedene Methoden zur Gestaltung digitaler Filter, darunter die Butterworth-, Chebyshev- und elliptischen Filter. Diese Methoden unterscheiden sich in ihrer Frequenzantwort, insbesondere in Bezug auf die Flachheit der Passbandantwort und die Steilheit des Übergangsbereichs.

Ein gängiger Ansatz ist die Verwendung von IIR- (Infinite Impulse Response) und FIR- (Finite Impulse Response) Filtern. IIR-Filter sind effizient, da sie weniger Koeffizienten benötigen, können jedoch Stabilitätsprobleme aufweisen. FIR-Filter hingegen sind stabiler und bieten eine lineare Phase, erfordern jedoch in der Regel mehr Rechenressourcen. Die Gestaltung eines digitalen Filters umfasst oft die Definition von Spezifikationen wie der gewünschten Passbandfrequenz, der Stopbandfrequenz und den maximalen Dämpfungen, die mithilfe von Techniken wie der bilinearen Transformation oder der Impulsinvarianz implementiert werden können.